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1
Introduction

Many physical and chemical processes require a high energy density to run, or to
keep running. An efficient way to achieve high energy densities is to start with a low
energy density and to focus this into a small volume. According to legend the Greek
scientist Archimedes used this principle during the siege of Syracuse, by focusing
sunlight onto Roman ships in an attempt to set them to fire. In modern science, we
are still trying to push the limits to which we can focus energy. A prime example
is the development of nuclear fusion reactors, where the key ingredient is to confine
a plasma at such a high energy density that nuclear fusion reactions take place. A
possible way to achieve this, is to generate a focusing flow of plasma [1, 2]. The
most extreme examples of flow focusing are actually happening naturally and are
found many lightyears away, for example in the gravitational collapse of stars. These
two examples are just a few of many others that require thorough understanding of
focusing flows, which is the main subject of this thesis.

Incompressible flows that are dominated by inertia have the property that focus-
ing of the flow results in an increase of the velocity. This property is very commonly
applied, for example in the summer by children narrowing the end of a garden-hose
to convert the rather weak stream that flows out usually, into a strong jet that reaches
much further. To describe these flows, one has to recognize that the flow rate (volume
per unit of time) in these flows remains constant. This constant flow rate condition
then tells us that the smaller the area A trough which a fluid has to flow, the larger the
velocity U becomes:

U ∝ A−1. (1.1)

1
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(a) (b)

Figure 1.1: (a) a converging-diverging “de Laval” nozzle, where gas is accelerated to
supersonic speeds. (b) after the impact of a disc on a water surface, a surface cavity
is formed which acts as a liquid nozzle that accelerates the gas flow inside the cavity.
The arrows in both images indicate the direction of the gas flow.

This principle is not only used by people trying to clean their car or motorcycle with
a garden hose, but also in rocket engines where exhaust gasses are accelerated to
speeds well above the speed of sound by a converging-diverging nozzle [3] as shown
in Fig. 1.1(a). In the latter example however, one has to be aware that the speeds
become too high for Eq. (1.1) to hold due to compressibility∗.

In the examples mentioned above, a fluid flow is focused by means of a solid noz-
zle, that decreases in surface area downstream. In the case of a gas stream however,
it is also possible to create a similar focusing nozzle from a liquid. Fig. 1.1(b) shows
that such a nozzle is formed naturally after the impact of a solid on a liquid surface,
where hydrostatic pressure is driving the gas flow, and the shape of the free surface is
converging the flow through a small area. One becomes aware of the complexity of
this system, when realizing that the liquid is not only influencing the gas stream, but
the gas also starts to have its effect on the liquid: The result is a system with a subtle
interplay between the dynamics of the gas and the liquid phase.

The free surface of a liquid can act as a boundary to focus a second fluid, but can
also become the subject of flow focusing itself. A particular example is the pinch-off
of an air bubble in a liquid, for example from an underwater nozzle [4–7] or after
the impact of a liquid or a solid on a liquid surface [8–10]. In these cases, a void is

∗Compressibility needs to be taken into account for Ma > 0.3, where Ma is the Mach number. After
reaching Ma = 1 at the neck of the nozzle, the diverging exit leads to a further acceleration of the flow.
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created inside a liquid, which shrinks due to capillary forces or hydrostatic pressure.
Eventually, the void pinches off, where velocities diverge as the moment of pinch-
off is approached, and the collapse becomes inertia-dominated. This divergence of
velocities is the result of focusing the liquid flow towards a single point: the area A
through which the liquid can escape approaches zero, which, according to Eq. (1.1)
leads to U → ∞.

A collapse driven by inertia is of interest for many applications because it can be
a very violent phenomenon: The jets that are formed after the collapse of cavitation
bubbles are responsible for the damage of ship propellers [11, 12], but can also be
used to pulverize kidney stones [13, 14] or to remove dentine debris from root canals
[15, 16]. The approach to a singularity is of great fundamental interest, especially
because after recent experiments it was thought that, unlike the pinch-off of a liquid
drop which is very well described by a universal law [17, 18], the pinch-off of an
axisymmetric air bubble was non-universal [10, 19, 20]. These systems are different
because the liquid drop pinch-off is governed by surface tension, where the bubble
pinch-off is inertia-driven. The discussion was settled thereafter by showing that the
axisymmetric pinch-off of an air bubble asymptotically approaches universality, but
that this universal behavior often is hidden: something like self-similarity is there
much earlier, but converges slowly to the real self-similar regime [21–23]. Thus, in
the case of an axisymmetric pinch-off, the collapse can be described by scaling laws
independent of the specific system, which means that the system has no memory of
its initial state. A slight deviation from axisymmetry however, again changes the
whole picture: it was found that even the smallest deviation from axisymmetry is
remembered until the pinch-off [24–26]. A peculiar aspect of this memory of the
initial state is that the absolute amplitude of the perturbation is remembered: the
relative amplitude therefore grows towards the pinch-off, which results in the fact
that eventually the perturbation dominates the shape of the free surface, and also
determines the way the bubble pinches off.

In industrial applications flow focusing can be both your enemy or your friend,
which we illustrate below with a few examples of both cases.

Situations where a free surface is driven to very small areas can sometimes be
limiting in applications, like e.g. immersion lithography [27–29]. In immersion
lithography a droplet is placed between a lens and a wafer to increase optical res-
olution, and this droplet stays attached to the lens as it moves over the wafer surface.
Above a certain speed a sharp corner is formed at the tail of the droplet, which even-
tually leads to detachment of small droplets if the speed is increased further [30, 31].
To prevent the undesired deposition of small droplets on a wafer, one would like to
avoid the formation of strongly curved interfaces. The first step for this would be to
understand exactly why such a sharp corner is formed, and how the size and shape of
the corner can be predicted.
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50 μm

Figure 1.2: A jet with a typical diameter of 5 µm, traveling at a speed of 490 m/s.
Time between the images is 500 ns. Courtesy of A. van der Bos, N. Oudalov, Y.
Tagawa and C.W. Visser.

Strongly curved surfaces can however also be very useful in applications. For
needle-free injectors, it is necessary to create a fast, thin jet [32]. Making use of
the strongly curved meniscus that is naturally formed in a capillary, an ultrafast jet
can be generated by shooting a laser in the liquid [33], see Fig. 1.2. In this case,
the curved free surface acts as a focusing mechanism for the flow that was created
by laser-induced cavitation [34, 35]. The formation of jets from a meniscus is also
widely applied in ink-jet printing [36, 37], where the flow is driven by a piezo-electric
element.

The objective of this thesis is to obtain a better understanding of the subjects
described above. We will do so by investigating the topics described in the following
chapters:

In Chapter 2 and 3 we investigate the role of air inside a collapsing cavity created
by the impact of a round disc on a water surface. For this we apply three different
methods to measure the air flow. In Chapter 2 we first experimentally determine the
contour of the cavity during formation and collapse, from which we derive the cavity
volume. Secondly, we introduce smoke particles inside the cavity which we illu-
minate using a laser sheet. Using particle image velocimetry (PIV) techniques, we
determine the velocity of the air in the cavity. Both direct and indirect measurements
agree very well and comparing our measurements with boundary integral (BI) simu-
lations gives excellent agreement. We find that, just before pinch-off, compressibility
of the air plays an important role in the dynamics of the cavity. In Chapter 3 we show
that the air inside the cavity can even reach supersonic speeds.

In Chapter 4 we replace the circular disc that was used in Chapters 2 and 3 by
one that has a non-axisymmetric shape similar to the petals of a flower. For small
harmonic disturbances we closely follow how these disturbances grow and oscillate
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during the collapse of the cavity. Our experimental results compare excellently to
theoretical predictions, and ultimately, by solving the collapse of the cavity in (un-
coupled) horizontal layers, were able to completely reconstruct the three-dimensional
shape of a cavity that was created by the impact of a disc with a mode-20 harmonic
disturbance. Increasing the amplitude of the perturbations, we depart from the linear
theory, and find astonishing non-linear effects like the formation of sub-cavities and
secondary jets.

In Chapter 5 we study the shape of a splash that is created in the very first in-
stances of the impact of a circular disc. Using experimental observations and bound-
ary integral simulations we show that the splash exhibits a self-similar behavior for
any value of the Weber number, the dimensionless quantity that compares inertia
with surface tension. We show that there exists a critical Weber number, above which
small droplets are ejected from the rim of the splash, we show that a Rayleigh-Taylor
instability is responsible for this transition.

In Chapter 6 we introduce a second liquid phase in our system by creating an
experimental setup with three flowing components: Water, oil and air. By impacting
the disc on a layer of oil that is floating on a deep layer of water, we obtain a deep
understanding of the jet formation and the bulk flow after cavity collapse, which also
applies for the single-liquid case. Specifically, we experimentally prove that the jet is
created from the surface of the cavity, confirming earlier theoretical predictions [38].
By using a deep layer of oil and starting the disc at the oil-water interface, we create
a two-fluid system without air, where the role of gravity has been greatly reduced.
Pulling the disc down entrains a column of oil into the water; we show that the shape
of the entrained oil becomes universal for high disc velocities.

In Chapter 7 we numerically investigate the formation of micro-jets created by
laser induced cavitation. We perform boundary-integral simulations that closely re-
produce experimentally obtained results. Using the insight obtained with numerical
simulations, we develop a simple analytical model that accurately predicts the jet
velocity dependence on the relevant parameters.

In Chapter 8 we investigate millimeter-sized silicone-oil drops that are sliding
down an inclined surface. Drops that are sliding faster, tend to obtain a cornered
shape at their tail. We experimentally show that the curvature at the corner increases
exponentially with sliding speed. We explain this exponential increase by showing
that the nanometric cut-off length, related to the classical viscous singularity at a
moving contact line, plays an essential role in the selection of the curvature at the tail
of a sliding drop.

We conclude in Chapter 9 with final remarks and an outlook for further research.
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2
Air flow in a collapsing cavity ∗

We experimentally study the airflow in a collapsing cavity created by the impact of a
circular disk on a water surface. We measure the air velocity in the collapsing neck
in two ways: Directly, by means of employing particle image velocimetry of smoke
injected into the cavity and indirectly, by determining the time rate of change of the
volume of the cavity at pinch-off and deducing the air flow in the neck under the
assumption that the air is incompressible. We compare our experiments to boundary
integral simulations and show that close to the moment of pinch-off, compressibility
of the air starts to play a crucial role in the behavior of the cavity. Finally, we
measure how the air flow rate at pinch-off depends on the Froude number and explain
the observed dependence using a theoretical model of the cavity collapse.

2.1 Introduction

The impact of a solid body on a water surface triggers a series of spectacular events:
After a splash, if the impact speed is high enough, a surface cavity is formed which
pinches off such that a bubble is entrained [1–3]. Right after pinch-off two strong
thin jets are formed [4], one shooting upwards and one shooting downwards.

An aspect in the impact on liquids that has drawn particularly very little attention
is the influence of the accompanying gas phase. When we take into account the inner
gas in the detaching air bubble, we find a singularity in the velocity of the inner

∗Ivo R. Peters, Stephan Gekle, Detlef Lohse, and Devaraj van der Meer, Air flow in a collapsing
cavity, Preprint (2012)
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10 CHAPTER 2. AIR FLOW IN A COLLAPSING CAVITY

gas. Assuming any finite flow rate for the gas, the velocity of the gas will diverge
because the area that the gas has to flow through goes to zero. Nature has found a
way to avoid a true singularity by letting compressibility limit the speed of the air, but
nonetheless the air plays an important role in the final shape of the cavity just before
pinch-off [5, 6], and can even reach supersonic speeds (see Chapter 3).

The main objective of this chapter is to understand what determines the gas flow
rate in the case of an impacting disc and to obtain insight in the role of compressibil-
ity effects in the air. To this end we apply two different approaches: First we perform
volume measurements to determine the flow rate based on continuity, and second we
measure the air flow directly by seeding the air with smoke and laser sheet illumina-
tion. We compare and extend our experiments with numerical simulations, where we
use one- and two-phase boundary integral simulations, sometimes coupled to com-
pressible Euler equations [7], to determine the air flow, with and without taking the
dynamics of the gas phase into account.

We have structured this chapter as follows: We first give a brief description of the
experimental setup in Section 2.2. Section 2.3 explains the method of volume mea-
surements, and the results are combined with numerical simulations. More specifi-
cally, we measure how the air flow rate at pinch-off depends on the Froude number
and explain the observed dependence using a theoretical model of the cavity collapse.
In Section 2.4 we perform a direct determination of the air flow velocity by seeding
the air with smoke and illuminating with a laser sheet. Subsequently, we compare the
results with the velocities that we determined using volume measurements. Finally,
in Section 2.5 we discuss in detail when and how compressibility becomes important.

2.2 Experimental setup

The experimental setup consists of a water tank with a bottom area of 50 cm by
50 cm and 100 cm in height. A linear motor that is located below the tank pulls
a disc through the water surface at a constant speed. This disc is connected to the
linear motor by a thin rod. The events are recorded with a Photron SA1.1 high speed
camera at frame rates up to to 20 kHz. Our main control parameter is the Froude
number, which is defined as the square of the impact speed U0, nondimensionalized
by the disc radius R0 and the gravitational acceleration g:

Fr =
U2

0
gR0

(2.1)

Two snapshots of the experiment are shown in Fig. 2.1. The left image shows the
situation right after the impact. where the cavity is being formed. A downward flow
of air is required to fill in the space that is created by the downward moving disk
and the expanding cavity. On the right a later stage in time is shown, some moments



2.2. EXPERIMENTAL SETUP 11

5 cm

Figure 2.1: Two snapshots of an experiment in which a disk with a radius of 2 cm
hits the water surface and moves down at a constant speed of 1 m/s. A surface cavity
is created that subsequently collapses under the influence of hydrostatic pressure.
Eventually, the cavity pinches off at the depth indicated by the dashed line, and a
large air bubble is entrained. The red arrows indicate the direction of the air flow: On
the left, volume is being created, resulting in a downward air flow. On the right the
bubble volume below the pinch-off depth is decreasing, and therefore air is pushed
upwards.
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before the pinch-off. Here, there is a competition between the downward moving
disc and the expanding part of the cavity on the one hand, and the collapsing part,
i.e., the region above the maximum, on the other. The former tends to increase the
cavity volume below the pinch-off depth (dashed line), whereas the latter decreases
it. We always observe that close to pinch-off, the violent collapse is dominant and
the bubble volume below the pinch-off point decreases, pushing air out through the
neck. As the neck becomes thinner towards the moment of pinch-off, the gas speed
increases rapidly. The remaining part of this chapter is devoted to measuring this air
flow and comparing with numerical simulations.

2.3 Geometric approach

The first way in which we will quantify the air flow through the neck of the cavity is
an indirect one: We will measure the time evolution of the volume of the cavity below
the pinch-off point and calculate its first derivative with respect to time. This will be
identified with the air flow rate through the neck. This involves the following assump-
tions: (i) The air flow is incompressible, (ii) the air flow profile is one-dimensional
(i.e., a plug flow) and only directed in the vertical direction, and (iii) the cavity shape
is axisymmetric. The first assumption is only violated close to the moment of pinch-
off, when the air speed diverges. Compressibility effects at this stage are investigated
in Chapter 3 and its effects will be discussed in section 2.5. We will justify the
second assumption partially by visualizing the air flow inside the cavity and mea-
suring the velocity directly; in addition it is known from two-fluid boundary-integral
simulations that the flow profile is very close to one dimensional [7]. The third as-
sumption only breaks down in the neck-region very close to pinch-off because very
small disturbances are remembered during the collapse (see Chapter 4 and Refs. [8–
13]). Here, this effect is only relevant locally on a very small scale and can therefore
be neglected on the large scale where we measure the volume.

2.3.1 Cavity volume

We measure the volume of the cavity below the pinch-off depth as illustrated in
Fig. 2.2: By tracing the contour for every frame in a movie and invoking axisym-
metry we are able to determine the volume of the bubble below the pinch-off depth
as a function of time. One such a measurement for a disk with radius 20 mm and
impact speed of 1 m/s is shown in Fig. 2.3. In the beginning (t . 0.022 s) the vol-
ume is increasing (positive slope), which means that the air at the pinch-off depth
is flowing downwards. At the maximum (t ≈ 0.022 s) the flux through the pinch-
off depth is zero, indicating a local stagnation of the flow at this depth. We will
study this stagnation point later, in section 2.5. After this maximum the volume starts
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(a) (b) (c)

Figure 2.2: (a) The volume of the cavity below the pinch-off depth (dashed line) is
determined by tracing the boundary (red line) and assuming symmetry around the
central axis. (b) The volume decreases as the neck becomes thinner until the cavity
closes. (c) After pinch-off a downward jet enters into the entrapped bubble, and the
bubble shows volume-oscillations and cavity ripples.
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Figure 2.3: Volume below the pinch-off depth as a function of time (blue dots), de-
termined from an experiment with Fr = 5.1. The vertical dashed line indicates the
moment of pinch-off. Close to pinch-off the volume decrease is well approximated
by a linear fit (green line), after pinch-off the bubble oscillates with its resonance
frequency (red line: fit with sine function). The steady growth in volume after the
pinch-off is caused by the jet entering the bubble.
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to decrease and the flow is directed upwards. This continues until the moment of
pinch-off which is indicated by the vertical dashed line in Fig. 2.3. A linear fit (green
line) reveals that the flow rate is approximately constant towards the pinch-off mo-
ment. More precisely, the linear fit is the time rate of change of the cavity volume
at pinch-off, which is equal to minus the maximum value of volume-based flow rate,
ΦV ≡ −dV/dt, under the assumption of incompressibility of the air. We will use
this maximum flow rate ΦV to compare the flow rates through the neck at different
Froude numbers.

After the pinch-off there is a clear oscillation of the volume together with a slow
apparent growth of the bubble. The growth is caused by the liquid jet that is entering
the bubble (Fig. 2.2c), as the amount of air is fixed after the pinch-off. Since our
focus is on the behavior before pinch-off, we chose not to correct the bubble volume
by subtracting this jet volume. Also, making such a correction would be complicated
by the fact that the jet is imaged through the refracting, curved interface of the air
bubble. Nevertheless we determined the frequency of the oscillation by fitting a sine
function (red line) after correcting for the slightly positive slope. For the conditions
of Fig. 2.3 the measured frequency is 143 Hz.

We compare this result with the resonance –or Minnaert– frequency f of a spher-
ical bubble in water [14]: f = 3.26/r where r is the bubble radius (in meters) and
the value of 3.26 m/s is based on the material properties of water. Taking the bubble
volume at pinch-off, which equals 5.49 ·10−5 m3 and adopting a spherical shape to
calculate the radius, we find f = 138 Hz, which is very close to the frequency of the
experimentally measured volume oscillation. Note that our bubble is far from spher-
ical, but it was shown that deformation of bubbles only has a small influence on its
resonance frequency [15]. The agreement of the volume oscillations after pinch-off
with the Minnaert frequency was also noted by [16] for the impact of freely falling
objects in water.

2.3.2 Air flow rate

A characteristic quantity concerning the gas dynamics in a collapsing cavity is the air
flow rate, defined as the volume of air that is being displaced per unit time close to
pinch-off. From Fig. 2.3 we infer that in approach of the pinch-off point this flow rate
becomes constant and can be determined as the maximum slope of the volume as a
function of time (green line, Fig. 2.3), i.e., the air flow rate through the neck equals
the rate of change of the volume of the cavity below the pinch-off depth, of course
under the assumption that the gas flow remains in the incompressible limit. This air
flow rate ΦV ≡ −dV/dt we subsequently non-dimensionalize dividing by the disk
radius squared and the impact speed (Φ∗V ≡ ΦV/(R2

0U0)), where the asterisk denotes
a dimensionless value. We determined the flow rate for a number of different disk
radii (ranging from 15 to 30 mm) and impact speeds (0.45-1.30 m/s), the results of
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Figure 2.4: Volume based flow rate as a function of the Froude number in a double
logarithmic plot. Both the experimental data (black dots) and the numerical data (red
diamonds) correspond to the maximum value of Φ∗V . The range of experimental data
is limited to Fr≈ 12 by the appearance of a surface seal. The blue line represents the
fit Φ∗V = 1.23Fr1/2 +1.01.

which are shown in Fig. 2.4 where we plot the dimensionless flow rate Φ∗V versus
the Froude number Fr on a double-logarithmic scale (black dots). The experimental
range is limited by the appearance of a surface seal at high impact speeds, where the
crown splash is pulled inwards due to the air flow induced by the disc and closes
the cavity at the surface. This surface seal usually has a significant influence on the
cavity shape and dynamics [17] as well as the gas flow rate in the neck, so all of the
experiments reported here are without surface seal. In the experimentally accessible
regime we find an apparent power-law relation of Φ∗V ∝ Fr0.3. When we extend the
experimental range by performing numerical simulations with our boundary integral
code [7, 17], we find that the results do not lie on a straight line (Fig. 2.4, open red
diamonds), which suggests that there does not exist a pure power-law.

An analytical argument - Using the assumption that the cavity expansion and col-
lapse take place in horizontal non-interacting layers of fluid, an assumption that was
successfully used in Bergmann et al. [17], we will now shed light onto the behavior
of the air flow rate through the neck as a function of the Froude number. We will pro-
vide an approximate argument in this subsection, and present a more detailed account
based on the model of Bergmann et al. [17] in the appendix. For convenience from
hereon we will take the z to mean the depth below the undisturbed water surface, i.e.,
z = 0 at the latter and increases with depth.

The quantity that we aim to calculate is the time rate of change of the cavity
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Figure 2.5: The partly collapsing partly expanding cavity close to the pinch-off mo-
ment can be divided in five different regions: In region I the cavity expands against
hydrostatic pressure; region II is the hardly expanding/collapsing region around the
maximum; in region III the hydrostatic pressure drives the collapse of the cavity, and
in region IV/V continuity takes over as the driving mechanism behind the collapse.
The difference between region IV and V is that the latter has a self-similar shape
which is independent of the Froude number [18].
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volume V̇ = dV/dt, i.e.,

ΦV ≡−
dV
dt

=− d
dt

∫ zdisc

zc

π [r(z, t)]2dz , (2.2)

where it is understood that the expression needs to be evaluated at the pinch-off time.
Here, r(z, t) is the cavity profile, zdisc(t) is the vertical position of the disc and zc is
the pinch-off depth. Using Leibniz’s rule we obtain

ΦV =−
∫ zdisc

zc

2π r(z, t) ṙ(z, t,)dz − πR2
0U0 , (2.3)

where the last term is due to the downward moving disc and ṙ ≡ ∂ r/∂ t denotes the
radial velocity of the cavity wall.

To approximate the integral in Eq. (2.3) we subdivide the expanding and collaps-
ing cavity –at times close to the collapse– into the regions of Fig. 2.5: In region I,
just above the disc, the cavity has a radius close to the disc radius, r ≈ R0, and is
expanding against hydrostatic pressure with a horizontal velocity that is proportional
to the disc velocity ṙ ∼U0. The contribution of Region I to the integral of Eq. (2.3)
can therefore be approximated as ΦV,I ∼ −R0U0∆zI , where ∆zI is the height of re-
gion I. The second region is an approximately symmetric region, where r≈ Rmax, the
maximum cavity radius at pinch off, and the velocity is close to zero, ṙ ≈ 0. For this
reason, and also because of the symmetry above and below the vertical position of the
maximum which contribute with sign change to the integral of Eq. (2.3), the contribu-
tion of region II is negligible, ΦV,II ≈ 0. In the third region the magnitudes of cavity
radius and velocity are similar to those in region I, but the cavity is collapsing rather
than expanding, i.e., r ≈ R0 and ṙ ∼ −U0, leading to ΦV,III ∼ R0U0∆zIII. Inciden-
tally, due to the asymmetry between regions I and III their respective contributions
are not expected to cancel. The fact that ∆zIII > ∆zI leads to a positive contribution
to the air flow rate. Finally, regions IV and V are the regions where the cavity col-
lapses inertially, i.e., the cavity wall accelerates predominantly as a consequence of
continuity

rṙ = constant∼ R0U0 ⇒ r ∼
√

R0U0(tc− t), (2.4)

where tc is the pinch-off time. The time derivative of Eq. (2.4) gives ṙ∼−
√

R0U0(tc−
t)−1/2 such that rṙ ∼−R0U0, independent of z. This now leads to ΦV,IV ∼ R0U0∆zIV
and ΦV,V ∼ R0U0∆zV respectively. Combining all of the above we can approximate
Eq. (2.3) as

ΦV = ΦV,I +ΦV,II +ΦV,III +ΦV,IV +ΦV,V−πR2
0U0

= R0U0(−AI∆zI +AIII∆zIII +AIV∆zIV)

+ AVR0U0∆zV−πR2
0U0 , (2.5)
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with AI, AIII, AIV, and AV numerical constants.
The difference between region I to IV and region V lies in the way the vertical

length scale scales with the impact speed, i.e., with the Froude number. As demon-
strated in [19] and [17], the cavity as a whole, i.e., the pinch-off depth zpinch and the
depth of the disc at the moment of pinch-off zdisc, scale as R0Fr1/2. So the same scal-
ing can also be expected for the vertical length scales ∆zI to ∆zIV introduced above.
Things are different for region V, close to the pinch off, where there exists a local self-
similar coupling between the vertical and the radial cavity dimensions [2, 18, 20]. For
this reason ∆zV is expected to be independent of the Froude number, i.e., ∆zV ∼ R0.
Inserting the scaling of the vertical length scales into Eq. (2.5) leads to the expected
R2

0U0-dependence in all terms and an additional Fr1/2-dependence for the first three
terms only

ΦV = R2
0U0

[
AFr1/2 +B

]
⇒ Φ

∗
V = AFr1/2 +B , (2.6)

with A and B numerical constants. To test this relation we extended the experiments
of Fig. 2.4 by performing boundary integral numerical simulations in order to cover
a wide range of Froude numbers †. The obtained results are added to Fig. 2.4 using
red diamonds. There is a good agreement with the experimental data, and the non-
constant slope is clearly visible. A fit to the simulation data confirms Eq. (2.6) and
gives A≈ 1.23 and B≈ 1.01.

2.4 Flow visualization

In this Section we perform a direct determination of the air flow velocity by seeding
the air with smoke and illuminating with a laser sheet, the results of which we will
subsequently compare to the velocities that were determined indirectly and indepen-
dently using volume measurements. We will first describe the method and results
of the flow visualization that we used to measure the air flow inside the cavity. Be-
fore doing the impact experiment we fill the atmosphere above the water surface with
small smoke particles. When subsequently the disk is moved down through the water
surface, the smoke is dragged along, and fills the cavity created below the surface.
We illuminate a thin sheet of the smoke using a 1500 mW diode laser line generator
(Magnum II) and record the experiment at a recording rate up to 15 kHz by placing
the high speed camera perpendicular to the laser sheet (Fig. 2.6). The smoke consists
of small glycerine-based droplets (diameter ∼ 3 µm), produced by a commercially
available smoke machine built for light effects in discotheques. A simple analysis
shows that the particles are light enough to neglect all inertial effects at least in the

†The simulations in Fig. 2.4 are two-phase boundary integral simulations, where close to pinch off
the compressibility of the gas is taken into account using the one-dimensional compressible Euler equa-
tions (briefly discussed in Section 2.5 as type (iii) simulations). More details about these simulations
can be found in [7] and in Chapter 3.
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laser

disk

camera

linear motor

Figure 2.6: A schematic view of the setup. A laser sheet shines from above on the
disk, illuminating the interior of the cavity after the disk has impacted the water
surface. We insert smoke in the top part of the container and when the linear motor
pulls the disk through the water surface at a constant speed, the smoke is entrained
into the cavity.
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Figure 2.7: A snapshot of the cavity with an overlay of a recording of the illuminated
smoke. The smoke particles are artificially colored orange in this figure. The size
and position of correlation window is indicated by the yellow square.

range of accelerations that we can measure experimentally: At a velocity difference
of 10 m/s the Reynolds number is ∼ 2, meaning we can assume Stokes drag. Know-
ing the force on the particle as a function of the velocity difference and the mass of
the particles, we can calculate the movement of the droplets in an accelerating flow.
We find that the particles follow the flow up to 25 m/s with a velocity lag less than
2%.

Correlation technique - We determine the speed of the air in the neck by apply-
ing an image correlation velocimetry (ICV) technique [21]. ICV differs from Particle
Image Velocimetry (PIV) in the sense that we do not resolve discrete particles in our
images, but we correlate smoke patterns instead of smoke particles. Figure 2.7 shows
the cavity with the illuminated smoke as an overlay, where the smoke is colored or-
ange artificially for clarity. The actual measurements are done on a closer view of the
cavity. The correlation is performed on a square correlation window, indicated by the
yellow square. The width of the correlation window is 160 pixels, corresponding to
8.8 mm. In the latest stages we switch to a correlation window of 96 pixels (5.3 mm)
wide, anticipating on the smaller neck radius. The measurements are insensitive to
small changes in the shape, size or position of the correlation window. The size of
the window is optimized for quality of the cross correlation.

Mainly due to reflections from and refraction at the free surface, there are struc-
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tures visible in the correlation window that move slowly compared to the typical gas
velocities that we want to measure. A correlation between two unprocessed images
gives a strong correlation peak close to zero because these structures are dominating
the image, and thereupon also the cross-correlation. Standard background subtraction
is not able to remove these features since, because of their refractive and reflective
nature they appear and disappear at unpredictable instances in time and are not sta-
tionary. Instead we use the difference between subsequent images, in the following
way. We start with three images In, In+1, and In+2. After applying a low pass filter
we create from these three images two new images by subtraction: Jn = In+1− In and
Jn+1 = In+2− In+1. After this we apply a min-max filter [22] to both images, followed
by the cross correlation of Jn and Jn+1. On the result of the correlation we apply a
multiple peak detection to find the highest peak p1 and the second-highest peak p2.
We determine the position of the highest peak with sub-pixel accuracy by a gaussian
fitting routine.

A subtraction technique similar to the one that we use here has been used previ-
ously for double-frame PIV images [23], where it was found that if the displacement
of the particles is too small between a pair of images, the displacement peak in the
correlation is biased. This bias is related to the particle size in pixels and the dis-
placement in pixels. In our case this length scale does not exist because we do not
resolve separate smoke particles in our experimental setup. Instead of calculating
the expected bias, we identify biased values by their departure from the global trend
of the data (Fig. 2.8, inset). As a remedy for the bias, we artificially increase the
displacement by skipping frames. The smaller the velocity, the larger the number of
frames we skip. In addition to this we note that the bias is less pronounced compared
to the case in [23] because we construct the image pair from three images in stead of
two.

The biased data and other spurious data is removed by making an objective se-
lection based on the peak-to-peak ratio of the correlation. This ratio is defined as the
ratio between the two highest peaks in the correlation: λ = p1/p2. The inset of Fig-
ure 2.8 shows the effectiveness of this selection method. We set λ to values between
3.5 and 5.0, depending on the specific measurement, so that almost all spurious data
is removed. Taking higher values for λ removes too much valid data points; lower
values allow for too many biased data points.

In Fig. 2.8 we compare the air speed that we measured directly using smoke
particles with the air velocity that we calculated indirectly using the change in volume
of the cavity, as discussed in the previous Section. The air speeds are plotted versus
the neck radius R(t) at pinch-off depth instead of time; time increases from right to
left in the Figure, i.e., towards smaller values of R. The blue line is obtained using
a polynomial (smoothing) fit to the volume-time data of Fig 2.3, determining the
flow rate ΦV (t) from the time derivative of this fit [Eq. (2.2)], and finally dividing
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Figure 2.8: The vertical air velocity through the neck as a function of the neck radius
R, measured in an experiment with Fr = 5.1 in three different ways: (i) Directly,
using smoke particles (diamonds), (ii) Indirectly, using a smoothing polynomial fit
to bubble volume of Fig. 2.3 (blue line) , and (iii) Indirectly, using a constant flow
rate approximation, determined at pinch off (cf. Fig 2.3, black line). The different
colors of the diamonds correspond to different numbers of frames that are skipped
in the cross-correlation (see main text). The inset shows the same vertical velocity
data measured using method (i) for two different values for the peak-to-peak ratio λ :
For λ > 1.5 (orange dots) we find strongly biased data, which are eliminated using a
higher threshold (λ > 3.5, black dots).
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by πR(t)2 to obtain the velocity. We find a very good agreement between the direct
(smoke) and the indirect (volume) measurements.

Finally, the black line in Fig. 2.8 is obtained by setting the flow rate to a constant
value, namely to that corresponding to the time derivative of the volume curve just
before pinch off (the green line in Fig. 2.3). We observe that at early times (large R)
there are large deviations from the other two datasets. This stands to reason, since at
these times we are still far away from the pinch-off moment, and the gas flow rate in
the neck has not yet become (approximately) constant. Close to pinch off however,
for R/R0 . 0.4, we find that the constant flow rate approximation and the smoothing
fit both provide the same air speed.

2.5 The role of compressibility

The fact that the air flow rate becomes constant together with the surface area of the
neck becoming vanishingly small suggests that the velocity in the neck diverges to-
wards pinch off. However, as was mentioned in the introduction, a real singularity of
the air flow velocity is prevented by compressibility effects. In a previous publication
we presented a directly visible effect of the compressed gas flow, namely the upwards
motion of the position of the minimum neck radius (Chapter 3). This upwards motion
was seen both in experiments and in simulations that take into account the compress-
ibility, and is absent in simulations that neglect compressibility. In the same paper
we reported that, next to this upward motion of the neck, the extremely fast airflow
affects the smoothness of the neck. Especially this last effect is important, since it is
in contradiction with the assumptions in theoretical pinch-off models where the neck
is assumed to be slender [18, 20].

The question that we intend to answer in the present Section is how the effects
of compressibility show up in the measurement of the cavity volume and the air flow
rate that can be deduced from it, as was presented in Section 2.3 of this work. More
specifically we will investigate the position of the stagnation point of the flow in the
cavity (see below) and the air flow rate towards the pinch-off moment. Following
the method we used in Chapter 3, we will compare our experimental results with
three different types of boundary integral simulations: (i) a single phase version,
in which only the water phase is resolved, (ii) a two-phase version where both the
liquid and the gas flow are resolved as incompressible inviscid media, and (iii) a
compressible gas version where the compressibility of the gas phase is taken into
account by substituting the incompressible axisymmetric gas phase equations by one-
dimensional compressible Euler equations at that moment during the collapse when
compressibility effects start to become significant. More details about the numerical
method can be found in [7] and in Chapter 3.

Stagnation point - Just above the disc the air must move downwards at approxi-
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mately the same speed as the disc, whereas simultaneously, towards closure, the air
in the neck is moving upwards. This implies that somewhere in between there will be
a stagnation point. We will estimate the location of this stagnation point as follows:
The first step is to extend the analysis of Section 2.3, where we tracked the volume
below the pinch-off depth in time, to any depth z below the pinch-off point. For every
depth z this will provide us with a curve similar to that in Fig. 2.3 and by determining
the time coordinate of the maximum we find the time tstag at which the averaged ‡

flow rate (∼ V̇ ) at that depth z≡ zstag is zero. This point we then interpret as the loca-
tion of the stagnation point zstag(tstag), which involves the assumption that close to the
pinch-off moment the flow in the neck region becomes predominantly homogeneous
and vertical. In Fig. 2.9 we plot the measured location of zstag for three different
realizations of an experiment with a radius of 2 cm and an impact speed of 1 m/s.
A difference with the actual location of the stagnation point is therefore expected
for high gas velocities (i.e., small neck radii). When we compare the experiments
to a two-phase incompressible boundary integral simulation [type (ii)] (red line in
Fig. 2.9, we find a considerable discrepancy between the two for small values of the
neck radius R. If we however use the compressible version of the simulation [type
(iii)], the agreement becomes much better (red line in Fig. 2.9, confirming the impor-
tance of compressibility in this limit. Note that experiments and both simulations do
converge for larger values of R, where compressibility effects play no role.

The agreement is not perfect however, which can partly be traced back to the
technical difficulty of obtaining reliable values for zstag from the experiment (which
reflects in the large spread between the three different realizations) and partly to the
fact that its determination neglects compressibility in a subtle way: Although in the
experimental data compressibility is of course necessarily reflected in the shape of the
cavity, the method of obtaining the air flow rate from it (namely by determining the
time rate of change of the cavity volume) neglects compressibility in the air phase.

Air flow rate - As explained in the introduction of this Section, we can compare
the air flow rate in the neck in experiment and simulation directly, by comparing the
experimental velocities (cf. Section 2.4) as was done in Chapter 3, but also indirectly,
by using the volume analysis of Section 2.3 both in experiment and simulation. This
second method, the results of which will be presented now, enables us to distinguish
the effect the compressibility of the air has on the cavity wall (which is included in
the analysis) from the pure compressibility of the flow (which is not included).

To do so it is convenient to from now on distinguish the true air flow rate from the
derived air flow rate, i.e., the one obtained from the time rate of change of the cavity
volume. In Fig. 2.10a we plot the non-dimensionalized experimental derived air flow

‡Averaged over the cross-sectional area of the cavity at that depth.
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Figure 2.9: The location of the stagnation point zstag with respect to that of the pinch-
off point zc as a function of the neck radius R. Note that when that the stagnation point
lies below the pinch-off point zc− zstag is negative. Time increases from right to left
(decreasing R). The dots are experimental data, obtained by volume measurements of
four different experiments, where each color corresponds to a different experiment.
All experiments were performed with disk radius R0 = 2.0 cm and impact speed U0 =
1.0 m/s, i.e., Fr = 5.1. The green line is the result of a two-phase boundary integral
simulation without taking compressibility into account [type (ii)]. The red line is
obtained by a two-phase boundary integral simulation which includes a compressible
gas phase [type (iii)].
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Figure 2.10: (a) The dimensionless derived air flow rate Φ∗V = ΦV/(R2
0U0) (from the

time rate of change of the cavity volume) as a function of the dimensionless neck
radius R/R0 in an impact experiment with disc radius R0 = 2 cm and impact speed
U0 = 1 m/s (Fr = 5.1). The black dots represent experimental data. The red line is
obtained using a one-phase simulation [type(i)], which excludes the air phase. The
green line is a two-phase boundary integral simulation without compressibility [type
(ii)]. Finally, the blue line is the result of a two-phase boundary integral simulation
which includes a compressible gas phase [type (iii)]. (b) Comparison of the dimen-
sionless derived air flow rate Φ∗V [blue line; the same curve as in (a)] and the true
air flow rate Φ∗, both plotted versus R/R0. The two curves diverge from each other
below R/R0 ≈ 0.2.
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rate in the neck,

Φ
∗
V ≡

ΦV

R2
0U0
≡− 1

R2
0U0

dV
dt

, (2.7)

as a function of the dimensionless neck radius R(t)/R0 (black dots), again for Fr =
5.1. Repeating the experiment results in an uncertainty in the magnitude of Φ∗V (cor-
responding to the spread of the experimental data in Fig. 2.4), but the behavior as a
function of time is always the same: The derived air flow rate in the neck reaches
a maximum, and approaches a finite value towards the moment of pinch-off. We
compare this result with those of the three different types of boundary integral simu-
lations:

The one-phase code [type (i)] predicts a steadily increasing derived air flow rate,
which seems to level off to a constant value towards pinch off (R/R0 → 0). This is
the red line in Fig. 2.10(a).

The two-phase incompressible version [type (ii)] predicts a maximum at a loca-
tion which is reasonably comparable to the experimental one, but after that decreases
toward zero at the pinch-off moment (the green curve in Fig. 2.10(a)). Since both
phases are incompressible, this stands to reason: The pressure in the cavity rises in-
stantly because of the divergence of the air velocity ug in the shrinking neck. This
pressure decelerates the cavity wall, which in turn decreases the derived air flow rate,
which should go to zero in the R/R0→ 0-limit: In the context of incompressible flow,
a finite derived air flow rate would result in an infinite air velocity in the neck and
consequently an infinite pressure within the cavity. Here it is good to note that for
this two-phase incompressible code the derived and true air flow rates are actually
identical, due to the incompressibility of the air phase.

The two-phase compressible simulation [type (iii)] also predicts a maximum for
Φ∗V , at a location similar to the two-phase incompressible code and the experiment,
but then decreases to a finite value for R/R0→ 0, just like the experiment. Clearly,
and in contrast with the other two versions of the simulation which behave poorly,
the agreement with the experiments is qualitatively very good and quantitatively sat-
isfactory. All three types of simulations and the experiments all converge for larger
R/R0 ≈ O(1), which is expected since airflow effects (let alone compressibility of
the air phase) are small or even negligible in that regime.

The final question that we want to address is the difference between the true air
flow rate (which incorporates all compressibility effects) and the derived one (which
only includes the effects of compressibility on the cavity wall). In experiment it is
impossible to obtain the first quantity at the required precision, because its determi-
nation includes measurement errors in both air velocity ug and neck radius R. The
two-phase compressible simulation technique however does offer a way to look at
this difference: In Fig. 2.10(b) we compare the derived air flow rate Φ∗V (the same
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curve as the blue one in Fig. 2.10(a)) to the true air flow rate Φ∗ (green curve), which
is calculated from ug(t) and R(t) as

Φ
∗ ≡ Φ

R2
0U0

=
1

R2
0U0

ug(t)
πR(t)2 , (2.8)

both as a function of the dimensionless cavity radius R(t)/R0. Clearly the two curves
coincide above R/R0 ≈ 0.2, but start to depart from one another below this value,
indicating that here the compressibility of the air itself becomes significant, in good
agreement with what we concluded from the previous plot (Fig. 2.10(a)). We observe
that the true air flow rate goes to zero for R/R0→ 0 (and incidentally not quite unlike
the two-phase incompressible curve (green) in Fig. 2.10(a)). This is of course what
should happen, since the gas velocity in the neck needs to remain finite at all times.
The difference between the two curves is the rate at which the gas in the cavity is
compressed.

2.6 Conclusions

We have measured the air flow inside the neck of a collapsing cavity that was created
by the impact of a circular disc on a water surface. More specifically we have per-
formed and compared two types of experiments: First we did indirect measurements,
using the time rate of change of the cavity volume as a measure for the air flow rate in
the neck, thereby neglecting compressibility of the air inside the cavity. Secondly we
performed direct measurements of the velocity in the neck of the cavity using image
correlation velocimetry. Numerical boundary integral simulations of three different
types have been used to evaluate and discuss our experimental findings.

For the complete experimentally available range of Froude numbers we showed
that there is a very good agreement between the indirectly measured air flow rate
and the boundary integral simulations. With the simulations we were able to extend
the range of experimentally attainable Froude numbers, which revealed that the air
flow rate is not a pure power-law of the Froude number. We formulated an analytical
argument revealing that the dimensionless air flow rate should scale as AFr1/2 +B.
Such a scaling compares well with experiments and simulations for A ≈ 1.23 and
B≈ 1.01.

By performing careful image correlation velocimetry experiments with a smoke-
filled cavity we have been able to directly measure the air flow for relatively low air
speeds, corresponding to R/R0 ≥ 0.3. In this region we found excellent agreement
with the gas velocities that we calculated from the indirect measurements of the air
flow rate and the neck radius R(t).

Due to the very high air speed close to the moment of pinch-off (R/R0 ≤ 0.2)
compressibility of the air can not be neglected anymore. We have demonstrated this
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by comparing experimental results to three types of numerical simulations: (i) one-
phase boundary integral simulations, (ii) two-phase boundary integral simulations
with an incompressible gas-phase, and (iii) a compressible gas version of the second
type of simulations that include the gas phase as a compressible fluid. We analyze
the time evolution of both the location of the stagnation point in the gas flow and the
derived air flow rate and explain our experimental observations in terms of the three
types of simulations. The main conclusion is that the behavior that we observe in
the experiments can only be reproduced by the simulations if compressibility is taken
into account.

Appendix: Derivation of the scaling law for Φ∗V

In this Appendix we show that the main result of § 2.3.2 can also be derived in a
slightly more rigorous manner, starting from the description of the cavity proposed
in [17]. The starting point is the two-dimensional Rayleigh equation for the cav-
ity wall r(z, t), which originates from integrating the Euler equations in uncoupled
horizontal layers of flow from some far away point R∞ to the cavity wall

log(r/R∞)
d
dt

(rṙ) + 1
2 ṙ2 = gz (2.9)

in which ṙ = ∂ r/∂ t and g is the acceleration of gravity.
This equation is solved in two different limits to describe the different regions

in Fig. 2.11. The first one is to describe region A and B, taking for every depth z
the moment tM(z) of maximum expansion as a reference point. With r(tM) = RM(z),
ṙ(tM) = 0, we can neglect the second term in Eq. (2.9) and replace the slowly varying
logarithm in the first term by a constant § β ≡ log(RM/R∞)

¶ and solve

r(z, t)2 = RM(z)2− gz
β
(t− tM(z))2 . (2.10)

In [17] it was shown that

tM(z) =
z

U0
+αexpaβexpa

R0U0

gz
, (2.11)

in which the first term represents the time span needed to arrive at depth z and the
second the amount of time to expand to the maximum radius. Here αexpaβexpa is a
constant ‖.

§Although strictly speaking RM(z) is a function of z, it is slowly varying and can approximated by a
constant when the logarithm of this quantity is taken.

¶The constant β is different in the expansion βexpa and the contraction phase (βctra.
‖The nomenclature of the constants is chosen such as to be consistent with [17].
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Figure 2.11: For the more rigorous derivation in this Appendix, the cavity close to
the pinch-off moment which was divided in five different regions in Fig. 2.5 needs
be redivided into four regions: The expansion region (A), between the location of
the disc zdisc and the location of the maximum zM, where the cavity expands against
hydrostatic pressure; the contraction region (B), between zM and the point zcross where
the cavity reaches the disc radius again where the hydrostatic pressure approximation
[Eq. (2.10)] is matched to the inertial approximation [Eq. (2.12)]; the collapse region
(C) between zcross and z∗, characterized by continuity; and the self-similarity region
(D), between z∗ and the pinch off location zc, which is in addition characterized by a
coupling between the vertical and horizontal coordinates.
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The second approximate solution corresponds to the small R limit in the collapse
regions C and D of Fig. 2.11, in which both the driving pressure gz and the inertial
term ṙ2/2 can be considered small when | log(r/R∞)| � 1/2. This then leads to
d
dt (rṙ) = 0 which is readily solved to give:

r(z, t)2 = 2αctraR0U0 (tcoll(z)− t) , (2.12)

in which αctra is a constant and tcoll(z) is the (virtual) closure time of the cavity at
depth z. At any depth z the approximate solutions are tied together at the maximum
(where a solution Eq. (2.10) with β = βexpa is matched to a solution with β = βctra)
and at the moment tcross(z) when r(z, t) = R0 again. Here, the solution Eq. (2.10) with
β = βctra is matched to Eq. (2.12). More details can be found in [17].

The quantity we want to calculate is Eq. (2.3), which contains the time derivatives
of Eqs. (2.10) and (2.12), which are:

d
dt

(
r(z, t)2) = −2

gz
β

(t− tM(z)) (regionA,B)

d
dt

(
r(z, t)2) = −2αctraR0U0 (regionC,D) . (2.13)

which subsequently need to be evaluated at the moment of pinch-off t = tc, for which
it was derived in [17] that it is independent of the impact speed: tc = C2

√
R0/g ∗∗.

Inserting this expression together with Eq. (2.11) into the first Eq. (2.13) gives

d
dt

(
r(z, tc)2)= (2.14)

−2
gz
β

(
C2

√
R0

g
− z

U0
−αexpaβexpa

R0U0

gz

)
.

Finally we need to integrate the second Eq. (2.13) and Eq. (2.14) over z between zdisc
and zc. This is a straightforward calculation which gives the following lengthy result∫ zdisc

zc

d
dt

(
r(z, tc)2)dz = (2.15)

− C2

βexpa

√
R0g

(
z2

disc− z2
M
)
+

2
3βexpa

(
z3

disc− z3
M
)
+

2αexpaR0U0(zdisc− zM)− C2

βctra

√
R0g

(
z2

M− z2
cross
)
+

2
3βctra

(
z3

M− z3
cross
)
+2αexpaR0U0(zM− zcross)−

2αctra(zcross− z∗)−2αctra(z∗− zc) .

∗∗The constant C2 is not independent of the α’s and β ’s: C2 = 2(αexpaβexpa +αctraβctra)
1/2.
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We now use that all length scales zdisc, zM, zcross, and z∗ scale as R0Fr1/2, except for
the difference (z∗− zc), which due to the self-similarity in the neck radius scales as
R0. This means that the above Eq. (2.15) has the folowing form∫ zdisc

zc

d
dt

(
r(z, tc)2)dz = (2.16)

−κ1
√

R0gR2
0Fr+κ2gR3

0Fr3/2 +κ3R2
0U0Fr1/2−κ4R2

0U0 ,

in which κ1-κ4 are positive numerical constants, which depend on the α’s, β ’s and
the proportionality constants in the scaling laws for the length scales zdisc, zM, zcross,
z∗, and (z∗− zc) . By writing

√
R0g = U0Fr−1/2 in the first two terms we finally

obtain: ∫ zdisc

zc

d
dt

(
r(z, tc)2)dz = (2.17)

(−κ1 +κ2 +κ3)R2
0U0 Fr1/2 − κ4 R2

0U0 .

If we now insert the above result in Eq. (2.3) we obtain

ΦV = −
∫ zdisc

zc

2π r(z, t) ṙ(z, t,)dz − πR2
0U0 (2.18)

= π(κ1−κ2−κ3)R2
0U0 Fr1/2 +π(κ4−1)R2

0U0

which then leads to
Φ
∗
V ≡

ΦV

R2
0U0

= AFr1/2 +B , (2.19)

with A≡ π(κ1−κ2−κ3) and B≡ π(κ4−1). The shape of this equation is identical
to Eq. (2.6) we derived in a more heuristic manner in Subsection 2.3.2.
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[19] V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet, and C. Clanet, Dynamics
of transient cavities, J. Fluid Mech. 591, 1–19 (2007).

[20] S. Gekle, J. H. Snoeijer, D. Lohse, and D. van der Meer, Approach to univer-
sality in axisymmetric bubble pinch-off, Phys. Rev. E 80, 036305 (2009).

[21] P. Tokumaru and P. Dimotakis, Image correlation velocimetry, Exp. Fluids 19,
1–15 (1995).

[22] J. Westerweel, “Digital Particle Image Velocimetry - Theory and Application”,
(1993).

[23] M. Honkanen and H. Nobach, Background extraction from double-frame PIV
images, Exp. Fluids 38, 348–362 (2005).



3
Supersonic Air Flow due to Solid-Liquid

Impact ∗ †

A solid object impacting on liquid creates a liquid jet due to the collapse of the
impact cavity. Using visualization experiments with smoke particles and multiscale
simulations we show that in addition a high-speed air-jet is pushed out of the cavity.
Despite an impact velocity of only 1 m/s, this air-jet attains supersonic speeds already
when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow
resembles closely that of compressible flow through a nozzle – with the key difference
that here the “nozzle” is a liquid cavity shrinking rapidly in time.

3.1 Introduction

Taking a stone and throwing it onto the quiescent surface of a lake triggers a spectac-
ular series of events which has been the subject of scientists’ interest for more than
a century [1–17]: upon impact a thin sheet of liquid (the “crown splash”) is thrown
upwards along the rim of the impacting object while below the water surface a large
cavity forms in the wake of the impactor. Due to the hydrostatic pressure of the sur-
rounding liquid this cavity immediately starts to collapse and eventually closes in a
single point ejecting a thin, almost needle-like liquid jet. Just prior to the ejection of

∗Published as: Stephan Gekle, Ivo R. Peters, José Manuel Gordillo, Devaraj van der Meer, and
Detlef Lohse, Supersonic Air Flow due to Solid-Liquid Impact, Phys. Rev. Lett. 104, 024501 (2010)

†The experimental work in this chapter is part of the present thesis. The numerical simulations are
due to Stephan Gekle.
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the liquid jet the cavity possesses a characteristic elongated “hourglass” shape with a
large radius at its bottom, a thin neck region in the center, and a widening exit towards
the atmosphere.

This shape is very reminiscent of the converging-diverging (“de Laval”) noz-
zles known from aerodynamics as the paradigmatic picture of compressible gas flow
through, e.g., supersonic jet engines. In this chapter we use a combination of exper-
iments and numerical simulations to show that in addition to the very similar shape,
also the structure of the air flow through the impact cavity resembles closely the high-
speed flow of gas through such a nozzle. Not only is the flow to a good approximation
one-dimensional, but it even attains supersonic velocities. Nevertheless, the pressure
inside the cavity is merely 2% higher than the surrounding atmosphere. The key dif-
ference, however, is that in our case the “nozzle” is a liquid cavity whose shape is
evolving rapidly in time – a situation for which no equivalent exists in the scientific
or engineering literature.

3.2 Experimental setup

Our experimental setup consists of a thin circular disc with radius R0 = 2 cm which
is pulled through the liquid surface by a linear motor mounted at the bottom of a
large water tank [16] with a constant speed of V0 = 1 m/s. To visualize the air flow
we use small glycerin droplets (diameter roughly 3 µm) produced by a commercially
available smoke machine (skytec) commonly used for light effects in theaters and
discotheques. Before the start of the experiment the atmosphere above the water
surface is filled with this smoke which is consequently entrained into the cavity by
the impacting disc. A laser sheet (Lasiris Magnum II, 1500mW) shining in from
above illuminates a vertical plane containing the axis of symmetry of the system. A
high-speed camera (Photron SA1.1) records the motion of the smoke particles at up
to 15,000 frames per second. Cross-correlation of subsequent images allows us to
extract the velocity of the smoke which faithfully reflects the actual air speed (see
Chapter 2). Our setup obeys axisymmetry and we use cylindrical coordinates with
z = 0 the level of the undisturbed free surface.

In the beginning of the process (see the snapshot in Fig. 3.1(a)) air is drawn into
the expanding cavity behind the impacting object with velocities of the order of the
impact speed. In a later stage however, this downward flux is overcompensated by
the overall shrinking of the cavity volume resulting in a net flux out of the cavity. The
cavity shape at the moment when the flow through the neck reverses its direction is
illustrated in Fig. 3.1(b). Towards the end of the cavity collapse a thin and fast air
stream is pushed out through the cavity neck which is illustrated in Fig. 3.1(c). From
images such as those in Fig. 3.1 we can directly measure the air speed u up to about
10 m/s as is shown in the inset of Fig. 3.2.
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(a) (b) (c)
20 mm

Figure 3.1: (a) After the impact of the disc an axisymmetric cavity is formed in its
wake and air is entrained into this cavity. (b) Due to hydrostatic pressure from the
surrounding liquid the cavity starts to collapse and the air flow reverses its direc-
tion. (c) As the collapse proceeds, air is pushed out of the shrinking cavity at very
high speeds. In (a)–(c) we overlaid images of the cavity shape (recorded with back-
light) and images of the smoke particles (recorded with the laser sheet and artificially
colored in orange). In the latter, the area illuminated by the vertical laser sheet is
restricted by the minimum cavity radius.
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Figure 3.2: The speed of the gas flowing through the neck (red curve) as a function
of the shrinking cavity neck taken from the fully compressible simulations. The main
plot demonstrates that sonic speeds are attained with the cavity pressure (blue curve)
being less than 2% higher than the atmospheric pressure. The enlargement (inset)
shows that the numerical scheme (red curve) agrees very well with the experimentally
measured velocity (black diamonds; the hole in the data between rneck = 16 mm and
22 mm is due to measurement uncertainties at low absolute velocities, see Chapter 2).
Slight non-axisymmetric perturbations [18, 19] in the experimental setup may be
responsible for the somewhat slower air speed of the experiment as compared to the
simulation. One can clearly see the inversion of the flow direction from negative (into
the cavity) to positive (out of the cavity) velocities.
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3.3 Numerical simulations

In order to determine the flow speed at even higher velocities we revert to multiscale
numerical simulations. Our numerical method proceeds in two stages: an incom-
pressible stage at the beginning and a compressible stage towards the end of the im-
pact process. During the first stage both air and liquid are treated as incompressible,
irrotational, and inviscid potential fluids. To solve for the flow field and to calculate
the motion of the interface we use a boundary integral method (BIM) as described
in [16] with extensions to include the gas phase [20]. At the moment that the air
flow through the neck reverses, see Fig. 3.1(b), the simulation enters into the sec-
ond, compressible stage: from now on only the liquid motion is computed by the
incompressible BIM.

To simulate the air flow in the second stage we need to take compressibility into
account meaning that a simple potential flow description is no longer possible. For-
tunately, at the end of the incompressible stage the air velocity profile is almost per-
fectly one-dimensional along the axis of symmetry. We can therefore describe the
gas dynamics by the 1D compressible Euler equations [21] in analogy to gas flowing
through a converging-diverging nozzle. In the Euler equations we include two addi-
tional terms accounting for the variation of the nozzle radius in time and space [22].
For the numerical solution we use a Roe scheme [21, 23] which is highly appreciated
for its computational efficiency and ability to accurately capture shock fronts.

The two-way coupling between the gas and the liquid domains is accomplished
via (i) the interfacial shape and its instantaneous velocity which is provided by the
BIM and serves as an input into the gas solver and (ii) the pressure which is obtained
from the solution of the Euler equations and serves as a boundary condition for the
BIM. Above the location of the initial free surface the surface pressure of the BIM
remains atmospheric.

3.4 Results

Combining our experiments with these numerical simulations leads to the main result
of this chapter contained in Fig. 3.2: the collapsing liquid cavity acts as a rapidly
deforming nozzle, so violent that the air which is pushed out through the neck attains
supersonic velocities (red line). Our simulations show that the pressure inside the
cavity which is driving this flow is less than 1.02 atmospheres (blue line). From
the inset one can tell that our simulations are in good agreement with the smoke
measurements over the entire experimentally accessible range. It is interesting to
note that even towards the end of the process (when sonic velocities are reached)
there is a net flux of air upwards through the cavity. If the process was governed
merely by the collapse of the neck itself one would expect the air to be pushed out of
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Figure 3.3: (a) The evolution of the local Mach number at the cavity neck for different
impact speeds (red: 1 m/s, blue: 2 m/s). For the 2 m/s impact speed sonic flow is
attained at a cavity radius of 1.2 mm. (b) The pressure at the neck diminishes due to
Bernoulli suction as the neck radius shrinks and air is forced to flow faster and faster.
The minimum pressure lies at about 0.6pa which is attained when the Mach number
reaches unity. (c) The experimental image shows a pronounced kink at the neck
which is not captured by the smoothly rounded curve predicted by the simulation
without air (cyan line). Only the inclusion of air effects into the simulations (red
line) is able to reproduce the kinked shape caused by the low air pressure at the neck
as well as the shape of the cavity above the neck.

the neck region in both vertical directions. This net flow thus underlines the important
role of the dynamics of the entire cavity.

To determine more precisely at what point the air flow through the neck becomes
sonic we show in Fig. 3.3(a) the evolution of the local Mach number, Maneck =
uneck/c (with the gas velocity uneck and the speed of sound c), for discs impacting
at 1 and 2 m/s. We find that the speed of sound is attained at cavity radii as large as
0.5 mm for the lower impact velocity and 1.2 mm for the higher impact velocity.

In a steady state one could expect from the (compressible) Bernoulli equation that
these very high air speeds would cause a greatly diminished air pressure in the neck
region. Despite the unsteadiness of our situation, the data presented in Fig. 3.3(b)
indeed shows that the pressure pneck decreases significantly once the neck has shrunk
to a diameter of roughly 4 mm (for the 1 m/s impact) while before that point it is prac-
tically atmospheric throughout. Classical steady-state theory [24] for a converging-
diverging nozzle predicts that when Maneck = 1 the pressure at the neck reaches a
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minimum value of

pneck/pa =

(
1+

γ−1
2

)−γ/(γ−1)

= 0.53 (3.1)

with pa the atmospheric pressure and γ = 1.4 the isentropic exponent. As shown in
Fig. 3.3(b) our situation – although highly unsteady – exhibits a similar behavior with
pneck ≈ 0.6pa as the Mach number becomes of order unity.

In Fig. 3.3(c) we illustrate how this low pressure gives us a handle to observe the
consequences of the supersonic air speed in our experiments: despite the air being
three orders of magnitude less dense than water, it is able to exert a significant in-
fluence even on the shape of the liquid cavity provided that its speed is high enough
[25, 26]. From the experimental image it is clear that the free surface close to col-
lapse no longer possesses a smoothly rounded shape but instead shows a significant
increase in curvature at the minimum (a “kink”). While this feature is not present in
a simulation neglecting the influence of air as those in [16], the inclusion of air ef-
fects allows us to capture quite accurately the cavity shape observed experimentally.
This gives strong evidence that in the experiment the air indeed becomes as fast as
predicted by the simulations and produces a Bernoulli suction effect strong enough
to deform the cavity.

The positive sign of uneck (see Fig. 3.2) indicates that the gas flow is directed
upwards at the neck. At the same time, the air at the bottom of the cavity is pulled
downwards by the moving disc. An interesting consequence of this competition be-
tween cavity expansion at the bottom and cavity shrinking in the neck is the existence
of a stagnation point with u = 0 as can readily be observed in Fig. 3.4(a) and its mag-
nification in Fig. 3.4(c).

As can be seen in the inset of Fig. 3.5, the distance between the neck and the
stagnation point is no larger than roughly 5 mm prior to cavity closure. Neverthe-
less, the pressure at the stagnation point equals the overall pressure inside the cavity
which is roughly atmospheric during the whole process (see Fig. 3.2). Recalling that
pneck ≈ 0.6pa this results in a tremendous vertical pressure gradient which of course
affects the dynamics of the cavity wall: the flow of air is so strong that it can drag
the liquid along resulting in an upward motion of the cavity neck just before the fi-
nal collapse. That this effect is indeed present in the simulations can be seen from
the red line in Fig. 3.5. For comparison, the cyan curve demonstrates that a single
fluid simulation neglecting the air dynamics would predict a monotonously decreas-
ing position. The experimental data however is in quantitative agreement with the
compressible simulations. Together with the cavity shape shown in Fig. 3.3(c) these
results constitute an impressive – albeit indirect – demonstration of the credibility of
our numerical predictions despite the fact that, understandably, it is not possible to
directly measure (super-)sonic air speeds with our smoke setup. Furthermore they
show that the perfectly axisymmetric approach of the simulations is justified and,
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Figure 3.4: (a) The vertical air velocity normalized by the local speed of sound Ma =
u/c as a function of the vertical position (the corresponding cavity image is shown
in the middle) for rneck = 0.9 mm: the profile exhibits a sharp peak approximately
at the height of the neck. (b) A close-up of the zone around the neck illustrates the
steepening of the velocity profiles towards pinch-off (numbers 1-5 correspond to neck
radii between 0.9 mm (number 1, bright red) and 0.5 mm (number 5, dark brown))
and the development of the shock front at roughly 0.1 ms before pinch-off. The neck
position zneck corresponding to curve 5 is shown by the dashed line. (c) A close-up
of the area below the neck shows the location of the gas flow stagnation point zstag
(dashed line).
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Figure 3.5: The vertical position of the cavity neck relative to the final closure height
zc as a function of the shrinking neck radius from experiment (black diamonds), sim-
ulations with (red line) and without (cyan line) air dynamics. The experimental data
is in quantitative agreement with the compressible simulations, while clearly the sim-
ulation neglecting air fails to capture the upward motion of the minimum induced by
the large pressure gradient between the stagnation point and the cavity neck. Exper-
imental error bars are determined by the number of vertically neighboring pixels all
sharing the same minimum radius. The inset shows the approach of the stagnation
point to the neck.

therefore, that supersonic gas velocities are reached before instabilities [18, 19] in-
evitably destroy the axisymmetry of the system.

Looking more closely at the velocity profile above the neck (see Fig. 3.4(b)) one
finds that it possesses a discontinuous jump: the signature of a shock front developing
in the air stream. While such a shock front is a common phenomenon in steady
supersonic flows, here we are able to illustrate its development even in our highly
unsteady situation when the gas velocity passes from sub- to supersonic.

3.5 Conclusions

We showed that the air flow inside the impact cavity formed by a solid object hitting
a liquid surface attains supersonic velocities. We found that the very high air speeds
can be reached even though the pressure inside the cavity is merely 2% higher than
the surrounding atmosphere. This is due to the highly unsteady gas flow created by
the rapidly deforming cavity. We illustrated how the air affects the cavity shape close
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to the final collapse in two different ways: (i) the initially smoothly curved neck shape
acquires a kink which can be attributed to a Bernoulli suction effect and (ii) the ini-
tially downward motion of the neck reverses its direction and starts to travel upwards.
The quantitatively consistent observation of both effects in numerics and experiment
makes us confident that our rather involved numerical procedure truthfully reflects
reality.
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4
Collapse and pinch-off of a non-axisymmetric

impact-created air cavity in water ∗

The axisymmetric collapse of a cylindrical air cavity in water follows a universal
power law with logarithmic corrections. Nonetheless, it has been suggested that the
introduction of a small azimuthal disturbance induces a long-term memory effect, re-
flecting in oscillations which are no longer universal but remember the initial condi-
tion. In this chapter, we create non-axisymmetric air cavities by driving a metal disc
through an initially quiescent water surface and observe their subsequent gravity-
induced collapse. The cavities are characterized by azimuthal harmonic disturbances
with a single mode number m and amplitude am. For small initial distortion ampli-
tude (1 or 2 % of the mean disc radius), the cavity walls oscillate linearly during
collapse, with nearly constant amplitude and increasing frequency. As the amplitude
is increased, higher harmonics are triggered in the oscillations and we observe more
complex pinch-off modes. For small-amplitude disturbances we compare our exper-
imental results with the model for the amplitude of the oscillations by Schmidt et al.
(2009) [1] and the model for the collapse of an axisymmetric impact-created cavity
previously proposed by Bergmann et al. (2009) [2]. By combining these two mod-
els we can reconstruct the three-dimensional shape of the cavity at any time before
pinch-off.

∗Published as: O.R. Enriquez, I.R. Peters, S. Gekle, L.E. Schmidt, D. Lohse and D. van der Meer,
Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water J. Fluid Mech. (2012)
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4.1 Introduction

The pinch-off of an axisymmetric air cavity in water is characterized by a finite-time
singularity. The kinetic energy of the flow is focused into a vanishing small volume
with a velocity whose magnitude diverges as the pinch-off moment is approached.
Several experimental and theoretical scenarios have been considered recently in the
study of this problem: a bubble rising from a capillary [3–6], bubbles in a co-flowing
liquid [7, 8], an initially necked bubble [9], and cavities created through impact [2,
10, 11]. Depending on the case, the collapse might be initiated by surface tension,
external flow, or hydrostatic pressure. However, irrespective of the cause, towards
the end it is the inertia of the fluid that takes over in every case, and the collapse is
accelerated as the radius of the cavity shrinks.

The time it takes each of these systems to reach the inertial collapse regime varies
by orders of magnitude [12]. Hence, it was not an easy task to determine whether
there was indeed a universal behavior underlying this phenomenon. The first pro-
posed model was a power law where the radius decreased proportionally to the square
root of the remaining time until collapse, τ [3, 4]. Subsequent experimental and nu-
merical studies consistently found the behavior deviated slightly from that 1

2 power
law [2, 5–7, 10, 13], generating doubts and starting a controversy about the universal-
ity of the phenomenon. [14] and [9] theoretically showed how the power law varies
weakly as a function of τ due to a logarithmic correction.

In conclusion, the axisymmetric problem converges to a universal self-similar
solution. If axial symmetry is broken by a small azimuthal perturbation, a truly uni-
versal system would be expected to converge to the same solution. However, through
experiments and simulations of an air bubble disconnecting from an underwater noz-
zle, it was shown recently that a slight azimuthal asymmetry can trigger vibrations
that persist in time [1, 13, 15, 16]. The fact that a small perturbation is not smoothed
out indicates that the system possesses memory of its initial conditions. Here we con-
duct an experimental study of the evolution of azimuthal disturbances in the collapse
of an otherwise axisymmetric cavity.

Impact vs. detachment

We study the cavity produced when a round disc with an azimuthal disturbance of its
edge is driven downwards through the free surface of a water volume (see Figs. 4.1
and 4.2). This is to be contrasted with the detachment of a bubble from a nozzle with
a similar disturbance, which is initially determined by the competition of buoyancy
forces with surface tension. The latter effectively smooths out large-amplitude and
high-mode-number (short-wavelength) perturbations, making nozzle experiments ap-
propriate only for working with small-amplitude, long-wavelength disturbances. In
addition, if the bubble is grown quasi-statically, viscosity can also play a role in
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smoothing perturbations due to the small Reynolds number of the water flow induced
by the injected air. Therefore, this experiment does not allow much variation of the
perturbations’ mode number and amplitude.

On the other hand, impact-created cavities are characterized by high Weber and
Reynolds numbers from the beginning (provided that the collision speed is high
enough). Then, viscosity and surface tension play a marginal role in the formation of
the cavity and are given no opportunity to erase features created by large-amplitude
or high-mode perturbations. There is no initial surface-tension-driven stage in the
implosion; instead, the expansion of the cavity is opposed by hydrostatic pressure,
which eventually starts the collapse, and is then quickly taken over by inertia. On top
of this, since the cavities are created on a free surface, there is unobstructed optical
access from the top, making it possible to track the shape of the horizontal section
of the collapsing cavity. Disc impact experiments are consequently ideal for experi-
menting with the influence of geometry in cavity collapse.

The effects of breaking the axial symmetry are clear (Fig. 4.1). We present exper-
imental results of cavities with disturbances of mode numbers 2 to 20 and amplitudes
ranging from 1% to 25% of the mean disc radius. The experimental setup is de-
scribed in §4.2. We then explain the axisymmetric collapse model and the theory for
the evolution of a perturbation in §4.3. Our experimental observations are shown and
discussed in §4.4. The collapse of small-amplitude cavities viewed from the top and
the side, and the comparison with theory are presented in §4.4.2. Finally, we discuss
the collapse of high-amplitude shapes in §4.4.3 and draw general conclusions in §4.5.

4.2 Experimental setup and procedure

4.2.1 Setup

The experimental setup consists of a linear motor that drives a vertical thin steel
rod downwards through the bottom of a glass tank containing 50× 50× 50 cm3 of
water (Fig. 4.2). A disc is attached horizontally to the top end of the rod with a
mounting system that ensures that the disc is parallel to the undisturbed water surface
and remains so throughout the impact. The motor is capable of a maximal 300 m/s2

acceleration and its position can be controlled with a resolution of 5 µm over its 1 m
long track. Since the objects are not dropped into the water, velocity is a control
parameter and not a response of the system. The setup allows for a precise control
of the impact velocity in the range 0−5 m/s. A more detailed description of the
apparatus can be found in [2].

The shapes of the impacted discs are described by the function r = Sdisc(θ),
where

Sdisc(θ) = Rdisc +am cos(mθ), (4.1)
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(a) (b)

Figure 4.1: Collapse of a cavity created through impact of a round disc (a) and an-
other using a disc with an azimuthal disturbance of mode number 20 (b) and am-
plitude of 2% of the mean disc radius. In both cases the mean radius of the disc is
20 mm and the impact speed 1 m/s. The walls of the cavity in (b) acquire a structure
that resembles the skin of a pineapple. This is explained by the oscillations triggered
by the azimuthal disturbance.
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Figure 4.2: Experimental setup and examples of impacting discs. This camera-mirror
configuration is used for top views; for side videos we simply move the camera down
to the level where the light is. The shown discs have a disturbance amplitude of 10%
of the mean radius (Rdisc).

Rdisc is the mean radius, am the disturbance’s amplitude and m its mode number
(Fig. 4.2). Discs are machined from a flat stainless-steel plate with a 2 mm thickness.
The edges are sharpened to right angles with the intention of pinning the contact
line to the lower edge and thus minimize the influence of wetting effects. Great
care was taken to ensure that both the disc and the rod were dry before each run, as a
single remaining drop on either is enough to noticeably alter the dynamics, especially
towards the final instants before pinch-off.

We recorded videos using a Photron SA1.1 high-speed camera at frame rates
from 5,400 to 20,000 fps with resolutions ranging from 1024× 1024 to 512× 512
pixels. We image both top views of the collapsing cavity (focusing on the pinch-
off plane) and side views to observe its structure. In order to avoid uneven optical
reflections from the surface during top-view experiments, in some of the runs we
diluted 1 g of milk powder per liter of water and shone light at the liquid, obtaining
evenly scattered lighting. In this case the top surface of the disc was covered with
black tape for improved contrast. For side views we used water without milk and
diffuse illumination from the back. Top view videos were processed to extract the
contour of the cavity in every frame and track the amplitude of disturbances as a
function of time (§4.4.2). Side views were directly compared with three-dimensional
parametric plots of the modeling equations (§4.4.2).
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4.2.2 Parameters

The formation of a cavity after impact and its subsequent collapse are determined by
the mean radius Rdisc of the disc, its shape, the impact velocity V0, and fluid properties
such as kinematic viscosity ν , density ρ , and surface tension σ . Hence, the dimen-
sionless parameters of this experiment are the Reynolds number, Re =V0Rdisc/ν , the
Froude number Fr = V 2

0 /(Rdiscg), and the Weber number, We = ρV 2
0 Rdisc/σ . The

surface tension (and, thus, We) is the only property that varies significantly following
the addition of milk for some of the experiments. Since we focus on analyzing the
influence of the impactor’s geometry, the impact speed and the mean disc radius were
kept constant in all experiments reported here (V0 = 1 m/s and Rdisc = 0.02 m). In
this way, the two variable control parameters –the mode number m and the ampli-
tude am– are related exclusively to the shape of the disc. In all of our experiments:
Re ∼ 2 ·104, Fr ∼ 5, and We ∼ 300− 400 (with measured surface tension values of
[72 mN/m] for water and [47.1 mN/m] for the milk solution, respectively). These
values indicate that the dynamics is dominated by inertia from the start of the ex-
periment, and a scaling analysis reveals that this condition prevails throughout the
experiment, making it unnecessary to consider their dynamic values. In the end,
the only relevant control parameter during the evolution of the cavity is the Froude
number since it is the parameter that determines when the cavity enters the inertial
collapse regime [12].

4.3 Models of cavity collapse

4.3.1 Axisymmetric radial dynamics

The model for an axisymmetric, impact-created cavity collapse by [2] neglects ver-
tical flow and its derivatives, assuming the collapse at each height z to be entirely
decoupled from other heights, following previous works [3, 4]. Since the flow is
considered to be exclusively in the radial direction, the only relevant term from the
continuity equation in cylindrical coordinates is

1
r

∂

∂ r
rur = 0. (4.2)

Integration of this equation, with the boundary condition that at the free surface the
velocities of the water and the interface must be the same, i.e., ur(R) = Ṙ leads to

ur =
RṘ
r
, (4.3)

which corresponds to a two-dimensional sink flow of strength Q(t) = RṘ, where R(t)
is the radius of the cavity, and potential

Φ = Q(t) ln(r). (4.4)
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Conservation of momentum is expressed by Euler’s equation of inviscid motion:

− 1
ρ

∂P
∂ r

=
∂ur

∂ t
+ur

∂ur

∂ r
, (4.5)

which must be integrated from the cavity radius R to R∞. The upper integration limit
is the length scale where the radial flow has decayed (R∞� R(t)); strictly, it should
depend on the Froude number and time, but it is possible to determine an approximate
constant average value from the experimental conditions and dimensions [2]. With
∆P being the (positive) difference between the hydrostatic pressure at R∞ and the
atmospheric pressure at the free surface of the cavity and accounting for the Laplace
pressure jump (σ/R) across the interface at R(t), integration of (4.5) yields:

∆P+
σ

R
= ρ

[
1
2

Ṙ2 +
(
Ṙ2 +RR̈

)
ln
(

R
R∞

)]
, (4.6)

where terms of O(R/R∞) and smaller were neglected.
In this way, the collapse at each height z is modeled like a two-dimensional

Rayleigh-Plesset bubble collapse and the whole cavity is composed of a series of
such collapses with different starting times as suggested by [17] in the context of
the void collapse in quicksand. The original model does not include surface tension
since an analysis of the dimensionless numbers from the problem reveals that surface
tension never plays a major role in such a collapse. However, we have included it
since disturbing the shape of the cavity creates regions of highly increased curvature
where surface tension might play a role.

During the inertial part of the collapse, the logarithmic term in (4.6) diverges as
R goes to zero and thus the only way that equation can remain valid is by having
the pre-factor of the logarithmic term go to zero. Integration from time t until the
collapse time tcoll yields a power law R(t) = α(tcoll− t)1/2.

Experimental studies [2, 5–7, 10, 13] have found that the exponent of the power
law is higher than 1

2 (typical values found are 0.54−0.60) and theoretical studies [9,
12, 14] have shown that the exponent indeed has a weak dependence on the logarithm
of the remaining collapse time, approximating to 1

2 only asymptotically at the end.
Nonetheless, the full theoretical result lies remarkably close to a power law fit over
many decades in time. Hence, we model the (dimensionless) mean radius R̃ of our
disturbed collapsing cavities as

R̃ = α
(
t̃coll− t̃

)β
, (4.7)

where the tilde indicates dimensionless quantities obtained by dividing length scales
by Rdisc and time scales by Rdisc/V0, i.e., R̃(̃t) = R(t)/Rdisc, t̃ = tV0/Rdisc and t̃coll =
tcollV0/Rdisc.
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4.3.2 Azimuthal disturbance

Memory-encoding vibrations induced by a small geometric disturbance have been
predicted theoretically for any mode number m, and observed experimentally for
cavities with m = 2 and m = 3 disturbances, namely bubbles released underwater
from a slot-shaped nozzle, by [1] and [16]. The theoretical model was derived
through a perturbation analysis of an azimuthal distortion to the geometry of a cavity
with the behavior described by (4.6). A brief explanation of the model follows for
the sake of clarity. The complete derivation can be found in [18].

Modeling the flow in an axisymmetric collapse as inviscid, irrotational, and in-
compressible (using Euler’s equations) implies that there is no dissipation of energy.
If so, the sum of kinetic and potential energies of the system will be conserved and
can be expressed using the Hamiltonian:

H(R,PR) =
P2

R

2M(R)
+∆PπR2 +σ2πR. (4.8)

The first term on the right is the total kinetic energy of the moving fluid, expressed in
terms of the effective mass and its momentum, which are, respectively,

M(R) = 2ρπR2 ln(
R∞

R
) (4.9)

PR = M(R)
dR
dt

. (4.10)

The second term is the potential energy due to the pressure difference between the
fluid bulk and the cavity (at ambient pressure), and the third term is the energy cost of
creating a free surface with the shape of the void. Applying Hamilton’s equations of
motion Ṙ = ∂H/∂PR and ṖR =−∂H/∂R we recover (4.6). We are thus faced with a
dynamics with one degree of freedom, R, and one constant of motion, namely the total
energy. The implications of this are important: the problem is integrable, has a perfect
memory, and according to the Kolmogorov-Arnold-Moser theorem if such a system
is perturbed the new dynamics should closely follow that of the unperturbed situation,
i.e., breaking the axial symmetry of the cavity by introducing a small disturbance of
the shape should yield a collapse with the same leading order dynamics and new
(approximately) conserved quantities, keeping it nearly integrable.

Although in our experiments the disturbance of the shape of the cavity is char-
acterized by a single mode m, the theoretical analysis considers a perturbation com-
posed of a sum of Fourier modes cos(mθ). For a conveniently chosen origin of the θ

coordinate, the perturbed shape of the void is

S(θ , t) = R(t)+∑
m

am(t)cos(mθ), (4.11)
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where R(t) is the mean cavity radius, which should follow the dynamics of the ax-
isymmetric case, and am(t) is the amplitude of each mode, which must be small when
compared with the mean radius (am(t)/R(t)� 1) in order for the small perturbation
theory to hold. Analysis of how the flow is modified by this shape disturbance [1, 18]
gives a linear second order ordinary differential equation (ODE) for the dependence
of time evolution of the amplitudes am on the mean radial dynamics:

äm +

(
2Ṙ
R

)
ȧm +

(
R̈
R
(1−m)+

σm(m2−1)
ρR3

)
am = 0. (4.12)

Eq. (4.12) includes the additional influence of surface tension due to the surface dis-
turbances on the right hand side of (4.11). We can find an approximate solution by
substituting R(t) = α(tcoll− t)1/2, neglecting surface tension, and solving the result-
ing Cauchy-Euler equation. In dimensionless form this gives

ãm(t) = ãm(0)cos
(

1
2

√
m−1ln

(
t̃coll− t̃

))
. (4.13)

We see that the amplitude should oscillate with a constant magnitude and a frequency
that diverges as t̃ approaches t̃coll and that higher mode numbers will oscillate faster.

Neglecting surface tension, a useful argument to understand the physics of the
predicted oscillations is the following: when the shape of the cavity is disturbed, its
curvature is no longer uniform. Therefore, neither is the acceleration of the converg-
ing flow associated to its collapse. As a result of continuity, convergence is stronger
in regions with larger curvature, which consequently accelerate more and overtake
the regions with smaller curvature (Figs. 4.3 and 4.4), inverting the shape of the cav-
ity. The higher the curvature, the quicker the overtaking becomes; thus with larger
mode numbers more oscillation cycles are visible (Fig. 4.5).

Qualitatively, there is a connection to other instabilities that occur on acceler-
ated fluid interfaces, like the Rayleigh-Taylor (RT) and Richtmeyer-Meshkov (RM)
instabilities. Quantitatively this connection is less clear since, instead of being con-
stant (RT) or shock-like (RM), in our case the acceleration is rapidly increasing in
magnitude, and even diverges as τ → 0 as a consequence of continuity.

Eq. (4.12), along with that for the axisymmetric radial dynamics (4.6) are the
ingredients for the comparison of the observed cavity shapes obtained from experi-
ments with theory (§4.4.2).

4.4 Experimental observations

4.4.1 Breaking the axial symmetry: general collapse mechanism

Figure 4.3 shows the collapse of an elliptical cavity (which can be approximated as
an m = 2 disturbance to a circle) where the longer side of the cavity closes first.
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crown splash

disc

(a)

(c) (d)

(b)
neck

Figure 4.3: Top view of a collapsing cavity (m = 2, Rdisc = 20 mm a2 = 0.25Rdisc)
focused on the pinch-off plane. The cavity (neck) and the disc are initially in phase
(a). Since the curvature is higher at the top and bottom of the neck, acceleration along
the longer axis is larger. This changes the shape of the cavity as it collapses (b and c).
Finally, the two points that were originally farthest apart come into contact first (d).

Initially, the shape of the cavity is the same as the impactor that created it (Fig. 4.3a).
As it closes, the points that were originally farthest apart come towards each other at
a higher speed than that of the end points of the minor axis (Fig. 4.3b). Eventually
it becomes clear that the shape of the cavity has inverted its phase with respect to
the impactor (Fig. 4.3c). This shift can be considered as an amplitude inversion of
the original shape, described as S(θ , t) = R(t)+am cos(mθ) where R(t) is the mean
radius and the amplitude, a, is originally positive and then becomes negative.

For small amplitudes (1 or 2% of the mean radius), oscillations remain linear and
with a nearly constant amplitude until very close to the pinch-off moment. However,
the fact that we have a disturbance with constant amplitude in a shrinking geometry
implies that the disturbance is actually growing with respect to the mean radius and
hence it is bound to become of the same order of magnitude at some point. When
this happens, the system starts developing higher harmonics and the linear oscillation
model can no longer describe the events. At that moment, we say that the collapse
evolves into a non-linear behavior. This was observed for all mode numbers from 2 to
20. In §4.4.2 we first discuss the linear regime, and afterwards turn to the non-linear
effects in §4.4.3.
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(a) (b)

Figure 4.4: Image of an m = 3, Rdisc = 20 mm, a = 0.1Rdisc cavity, approximately
10 ms after disc impact (a). Approximately 90 ms afterwards, it is clear that the shape
has inverted with respect to the original (b).

4.4.2 Effect of small-amplitude disturbances

Events on the pinch-off plane

Small disturbances do not decay during the collapse of the cavities formed in our
experiments. In Fig. 4.5 we show as an example eight snapshots of the evolution of
an m = 16 cavity. Within the bounds set by the used frame rate and resolution (20000
fps and a scale of approximately 86 µm/pixel), the cavities retain memory of the
shape that created them throughout the whole collapse process. We tracked the edge
of the cavity S(θ , t) at every frame from the top-view videos, and found the mean
radius R(t) and disturbance amplitude am(t) at each time by fitting the curve

S(θ , t) = R(t)+am(t)cos(mθ +φm(t)), (4.14)

which is Eq. (4.11) for a single mode perturbation. Since φm(t) was found to be nearly
constant in time, we chose the reference angle θ = 0 to be any line of symmetry in
order to match with the model’s description of the free surface.

We determined the proportionality constant α and the power-law exponent β

by fitting (4.7) to the experimental data of the mean radius. The values found for
α were around 1.4 for all realizations. For a constant sink flow of dimensionless
strength Q̃ = R̃ ˙̃R, with R̃ given by (4.7) it follows that Q̃ = βα2τ̃2β−1, where τ̃ =
t̃coll − t̃. Using β = 1

2 (from the power-law model for the axisymmetric case by [3]
and [4]) we find that Q̃ = 1

2 α2. With α ≈ 1.4, as found in our experiments, Q̃exp ≈ 1.
The appropriate dimensional scaling of the flow in this work is Qtheo ∼ RdiscV0 =
0.02 (m2/s), which upon nondimensionalization with the scales Rdisc and V0 becomes
Q̃theo = 1, thereby confirming that the mean flow behavior in our experiments is
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similar to the axisymmetric case. Values for β were found to lie in the range 0.57−
0.60, which is also consistent with previous works (see §4.3.1).

Next, we constructed the theoretical curves for the evolution of the amplitude
am by introducing the fitted power law into (4.12). The initial condition for am was
determined from experimental observations and taken at a maximum of the curve;
hence, the initial condition for the derivative is ȧm = 0. Figs. 4.6 and 4.7 show the
experimental results compared with the theory in semi-logarithmic plots of the mode
amplitude versus the mean cavity radius, nondimensionalized using Rdisc (in these
plots time increases from right to left). The amplitude in the theoretical curves neither
blows up nor decays; it stays roughly constant in time. This is confirmed by the
experimental data, at least during the first oscillations. The amplitude in experimental
data drops at the end since we lose the capability to faithfully track the edge of the
cavity towards the final collapse.

The oscillation amplitude is roughly preserved, but as R(t) collapses, the rela-
tive disturbance am(t)/R(t) grows (Fig. 4.8). Since linear oscillations occur only for
a(t)� R(t), once this condition is not fulfilled non-linear effects overtake the dy-
namics, adding complexities to the shape of the cavity and increasing the difficulty
of tracing its contour. The oscillation period looks constant, but as the horizontal
axis is logarithmic, the frequency is actually increasing exponentially (chirping, cf.
Eq. (4.13)). This is how the apparent contradiction between the universality of the
axisymmetric system and the retention of the azimuthal disturbance at the same time,
manifests itself in the dynamics. Part of the information (the mode amplitude) from
the initial conditions is encoded and preserved –the cavity ‘remembers’ the shape that
created it– but the chirping of the frequency makes it increasingly difficult to back-
track the evolution of the cavity as the collapse approaches, hence scrambling part of
the information at the end [1].

The role of surface tension

We shall now, as an interlude, comment on the role of surface tension. According
to the model, surface tension is expected to change the oscillation frequency and
amplitude (Fig. 4.8). Nonetheless, we see that experimental data acquired using water
(σw = 72 mN/m) and data with the milk solution (σm = 47.1 mN/m) lay on top of
each other (Figs. 4.6 and 4.7). At first this might suggest that surface tension plays
no role at all. If this were true, the theoretical curve without surface tension would fit
these data; but it does not. Instead, the best fit is obtained with the surface tension of
the milk solution.

The milk powder dissolved in the experimental tank contains surfactant particles
which adhere to the free and initially quiescent surface reducing surface tension.
When the disc impacts and penetrates, a fresh free surface is rapidly created on the
walls of the cavity, to which surfactants take time to adhere. Thus, for the duration of
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(a) τ = 17 ms (b) τ = 12 ms (c) τ = 8.4 ms (d) τ = 5.5 ms

(e) τ = 2.9 ms ( f ) τ = 1.4 ms (g) τ = 0.45 ms (h) τ = 0.15 ms

(a) τ = 17 ms (b) τ = 12 ms (c) τ = 8.4 ms (d) τ = 5.5 ms

(e) τ = 2.9 ms ( f ) τ = 1.4 ms (g) τ = 0.45 ms (h) τ = 0.15 ms
20 mm

Figure 4.5: Eight snapshots from a collapse with m = 16, Rdisc = 20 mm and am =
0.02Rdisc. The 16 peaks and valleys from the original shape can be clearly seen (a).
The amplitude decreases on the way to inversion (b) and for an instant has a nearly
round shape. The amplitude increases again (c) but it has now inverted with respect to
(a). The process carries on (d,e) until we can still see a disturbance but cannot make
out the details clearly at our experimental resolution (f,g). Finally, the void pinches
off (h).



60 CHAPTER 4. COLLAPSE OF A NON-AXISYMMETRIC CAVITY

10
−1

10
0

−0.02

−0.01

0

0.01

0.02

10
−1

10
0

−0.02

−0.01

0

0.01

0.02

10
−1

10
0

−0.02

−0.01

0

0.01

0.02

10
−1

10
0

−0.02

−0.01

0

0.01

0.02

Figure 4.6: Evolution of the dimensionless oscillation amplitude as the radius col-
lapses (time goes from right to left). Results for several different mode numbers
with an initial amplitude of 1% of the mean radius. Amplitude is expressed as
ã = a(t)/Rdisc. Circles: measurements with milk; crosses: plain water; solid line:
theoretical prediction from Eq. (4.12) using the measured surface tension for the milk
solution and for a given (dimensionless) mean radius R̃ = α (̃tcoll− t̃)β with α and β

obtained from experiment.
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Figure 4.7: Evolution of the dimensionless oscillation amplitude as the radius col-
lapses. Results for several different mode numbers with a slightly higher initial am-
plitude of 2% of the mean radius. Circles: measurements with milk; crosses: plain
water; solid line: theoretical prediction.
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Figure 4.8: Theoretical behavior of the amplitude, normalized by the disc radius, of
an m = 20, a20(0) = 0.01Rdisc collapse with different surface tension values (left).
— σ = 0, −− σm = 47.1 mN/m (milk), · · · σw = 72 mN/m (water). The same plot
is shown on the right, but with the amplitude a20(t) divided by R(t), to illustrate the
growth of the relative disturbance.

the experiment (∼ 100 ms) surface tension must be effectively the same as water, or at
least considerably higher than the value measured at the static surface. Nonetheless,
from fit of the theoretical model we consistently find that the effective surface tension
σeff must be lower. We now show that this can be interpreted as an effect of the axial
curvature, neglected by the two-dimensional model.

Considering the axial curvature as being related to the mean cavity radius R(t)
(which is the curvature radius in the azimuthal direction) by a (nearly constant) ratio
γ such that Rax(t) = −γR(t), we can write the Laplace pressure jump across the
interface as σκ = σ (1/R(t)−1/γR(t)). The opposing signs in the curvatures are
due to the hourglass shape of the cavity, which can be seen in Fig. 4.1. The right-hand
side of the previous expression can be rewritten as σeff/R(t) where σeff =σ (1−1/γ),
which for any γ > 1 gives a lower effective surface tension, thereby qualitatively
explaining our experimental observations. Figure 4.1 also makes clear that Rax >R(t)
and thus indeed γ > 1. From side-view experimental images, we have observed that
during the analyzed part of the collapse, γ varies between 2 and 4. The relation
between the effective surface tension used for the theoretical fit (σm) and the value for
water (σw) is σm ≈ 2

3 σw, corresponding to γ ≈ 3, which is in quantitative accordance
with our estimation of the effect of the axial curvature.

The structure of the cavity

We have so far tracked the instantaneous shape of the cavity on a horizontal plane
at the pinch-off depth by looking from the top (see [19]). Switching to a side view
allows us to see the complete evolution of the cavity at any given time before collapse
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(a) (b) (c) (d) (e)

Figure 4.9: Evolution of the collapse of an m = 20, a20 = 4% cavity as viewed from
the side; Rdisc = 20 mm and V0 = 1 m/s.

in a single snapshot. Figure 4.9 shows four images of a cavity before it pinches off
and one afterwards. We can see the walls of the cavity developing a structure that
resembles the skin of a pineapple (see [20]). Furthermore, the structure is not lost
after collapse and is still clearly seen in the horizontal cavity ripples that form after
pinch-off and were studied in detail by [21].

We can reconstruct the shape by combining the model for axisymmetric collapse
(4.6) with the equation for the perturbation’s amplitude (4.12). First we solve the
equation for the mean radial dynamics (4.6), and afterwards introduce the obtained
R(t) and its time derivatives in (4.12). Since the models are two-dimensional and
decoupled in the vertical direction, the three-dimensional shape is built by solving
the equations simultaneously at several depths z as done in [17] for the cylindrical
void collapse in dry quicksand. Figure 4.10 shows a parametric plot of the solutions
just before pinch-off (4.10a) and an experimental image at the same time (4.10b). We
can improve on this result by using the same axisymmetric boundary integral code
that was used in [10, 11, 22] to obtain the undisturbed cavity profile R(z, t) which has
been found to be in very good agreement with the experimental results [2] and again
use equation (4.12) to superimpose the effect of the disturbance in exactly the same
manner as described above. This procedure gives the shape in Fig. 4.10(c) which is
very similar to the experimental picture, capturing even small details.

4.4.3 Effect of large-amplitude disturbances

Increasing the amplitude of disturbances gives rise to more complex collapses. Such
cases cannot be described with models derived from the analysis of a small perturba-
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(a) (b) (c)

Figure 4.10: Side view images from experiments and model of m = 20, a20 = 2%
collapses. The view in (a) was obtained through the simultaneous solution of the
model for two-dimensional axisymmetric collapse and the one for the amplitude of
a disturbance; (b) is an experimental image; and (c) was obtained by applying the
second model to a cavity profile that resulted from a boundary integral simulation of
the axisymmetric case. This last method is more effective in reproducing the shape
of the cavity, as it captures the axial curvature better.
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tion, since there is a clear non-linear behavior. Furthermore, the cavities’ evolutions
are not the same for all geometries. Phase inversions are still observed and are ex-
plained by our continuity argument (§4.4.1) but it is very clear that the cavities no
longer close approximately at a single point. Instead, a variety of closure types arise
[cf. 15]; for example: pointy and angular structures, finger-like forms, jets in the ra-
dial direction, and sub-cavities. Combinations of two or more of these events might
take place. The symmetries of the cavities are always preserved, which means that
the original single mode perturbation is dominant. However, other modes are excited
and, since symmetry is conserved, the excited mode number m changes to an integer
multiple of its initial value. On top of this, there are situations in which one value
of the angular position θ corresponds to multiple points of the cavity wall, thereby
confirming that a simple mode description is no longer applicable.

Some characteristic features

In Fig. 4.11 we compare snapshots from m = 6 cavities with different initial distur-
bance amplitudes a6(0)/R(0) = 4%,10%, and 25%. Each column is a time series of
images belonging to one experimental realization. Corresponding snapshots in each
series have been taken at equal remaining times to collapse (τ). Whereas the 4% and
10% series are similar, with comparable features occurring at approximately equal
times –albeit more pronounced for the larger initial disturbance– the 25% series dif-
fers considerably. A closer look at images aiii and biii (τ = 9 ms) in Fig. 4.11 reveals
pointy, ridge-like jets being formed in singular cusps where the flow converges. For
the largest disturbance, this happens only at τ = 0.74 ms (cvi). In time, such ridge-
like formations can evolve into thicker, finger-like structures (biv).

We found these kind of shapes to be recurrent for most modes and amplitudes
but the time at which they happen varies in each case. When they occur too close to
pinch-off there is no time for thickening and the collapse takes place with coalescence
of the jets in the middle, which tends to happen when the initial amplitude is small
(4% or less). Larger amplitudes seem to be more likely to form bigger sub-cavities.
Still, the description cannot be generalized. For example, an m = 6, a6 = 25% cavity
will develop wide liquid structures that seem to crawl towards the center (Fig. 4.11ci)
and eventually it assumes a shape with thin air arms (civ) through which water rushes
in to invert the shape; in the end, the collapse (from the top) looks a lot like those
with a small initial amplitude. In contrast, an m = 3, a3 = 25% void will initially
form similar thick structures, but they will come in contact with each other, forming
large cylindrical sub-cavities (Fig. 4.12).

The disturbance amplitude is roughly conserved during non-linear collapse. We
have measured the longest and shortest diameters of cavities through several frames
and from that estimated the mean radius and amplitude. The maximum amplitudes
found have been of the same order as the impacting shape’s. In Fig. 4.11 we can
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Figure 4.11: Comparison of m = 6 collapses with different initial amplitudes. The
oscillation periods of disturbances 4 and 10% of the mean radius seem a lot more
similar to each other than to a6 = 25%, where it takes a considerably longer time for
the shape to invert. In addition to cusps (avi) and jets (biii,cvi), we can see finger-like
structures (biv, bv) that come into contact to form sub-cavities (bvi). When the initial
disturbance is very large, such features become very pronounced (series c).
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see that the oscillation period changes noticeably when varying the initial amplitude.
Look at the row where τ = 9 ms and notice how the two cavities on the left (the
smaller-amplitude ones) have already started the shape inversion, as made clear by
the jets that are being formed, while the rightmost void is still evolving towards the
reversal.

Sub-cavity formation

By looking at the last images before the void closes it is easy to convince oneself that
it is very unlikely that the cavities will pinch-off at a single point, thus sub-cavity
formation must have happened in every case, although it might be extremely short-
lived, not appreciable with our imaging capability, or both. The type of sub-cavity
formation depends on whether the last inversion takes place early enough to allow for
the thickening of the jet-like structures or not; and we have identified several different
cases. For all mode numbers, m+1 sub-cavities are formed -a central one surrounded
by m satellites- except for m= 2, where there are just m of these (Fig. 4.3). Sometimes
the central sub-cavity is the smallest and collapses right away while the surrounding
ones take longer to disappear. In other cases the exact opposite occurs. An example
of the first case is shown in Fig. 4.12, where an m = 3, a3 = 25% void forms four
sub-cavities. The center one is gone almost immediately but the other three live long
enough to further partition and briefly become six little holes. When we can observe
the sub-cavity evolution we always observe a phenomenon like in Fig. 4.12(c) where
small jets are impinged from the contact points into all of the remaining sub-voids.

Side view

Another difference with small-amplitude collapses is revealed by looking at the pinch-
off from the side. Figure 4.13 shows the pinch-off moment for a round disc and three
m = 6 discs with amplitudes 4, 10, and 25%. The images in every case are just one
frame before the cavity is definitely separated into top and bottom voids. Here the
effects of the disconnection not taking place at a single point are manifested in drastic
changes of the void’s shape at the pinch-off point and accentuation of the top-down
asymmetry, which affects the bottom part the most. Figure 4.13(c) shows three air
columns with water around them; presumably there are three more columns hidden
behind these (see Fig. 4.11bvi), depicting a situation where seven sub-cavities were
formed, the central one collapsed first, and the remaining six close afterwards simul-
taneously. In Fig. 4.13(d) we can see that the pinch-off took place in two stages;
the “arms” of the cavity closed first, and smaller cavity is left in the center which
collapses much like smaller-amplitude voids (see third column in Fig. 4.11).
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(a) τ ≈ 12.8 ms (b) τ ≈ 5.0 ms (c) τ ≈ 3.5 ms (d) τ ≈ 0.5 ms 
20 mm

Figure 4.12: Example of sub-cavity formation for an m = 3, a3 = 25% collapse.
Three large sub-cavities are formed around a smaller central one which quickly dis-
appears. The inward pointing jets in (a) are due to the growth of the initial m = 3
disturbance. The jets in (c) are due to the collision (shown in image b) and subse-
quent convergence of neighboring regions of fluid which lead to six small cavities
before closing (d).

4.5 Conclusions

We have experimentally shown that breaking the axial symmetry of an impact-created
cavity leads to oscillations of its walls as it collapses. A small, single-mode distur-
bance with an amplitude of 1 or 2% of the mean radius gives rise to linear oscillations
of approximately constant amplitude and increasing frequency. The linear behavior
is maintained until the radius shrinks to a size comparable to the disturbance; af-
terwards, higher oscillation modes evolve and non-linearity sets in. The mean ra-
dius evolves in the same way as the axisymmetric, universal case, making this sys-
tem unique in the sense that it combines universal behavior in the radial direction
with memory of initial conditions in the azimuthal direction. Using two-dimensional
models for the mean radius and the disturbance’s amplitude we can reproduce the
three-dimensional shape of the cavities and understand its structure.

Increasing the amplitude of disturbances induces non-linear behavior earlier in
the collapse. The structures revealed in these cases attest to the beauty underlying
collapse phenomena in fluid dynamics. We have observed a variety of pinch-off
types arise and vary with mode numbers and amplitudes. Cavities preserve their
symmetries in all cases, but the development of higher harmonics in this system is
beyond our mathematical modeling so far.
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(a) Round disc (b) m = 6, a6 = 4%

(c) m = 6, a6 = 10% (d) m = 6, a6 = 25%

20 mm

Figure 4.13: Effects of axial symmetry breakup on pinch-off. Perturbed cavities no
longer collapse at the same point and, as could be expected, the effects become more
pronounced with larger amplitudes. Up-down asymmetry is noticeably accentuated,
affecting the void below the deep seal point more.
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5
Splash formation and droplet ejection after

disc impact on a liquid surface.∗

In this paper we analyze the generation and breakup of the crown splash created
when a disc impacts normally onto a free surface. We find that for sufficiently small
time after impact, the flow and the free surface in the region close to the disc edge
possesses a self similar structure. Moreover, for the case under study here, which cor-
respond to large values of the Weber number We = ρRDV 2

D/σ , we find that breakup
of the splash into a crown only occurs above a threshold Weber number Wecrit . Above
Wecrit , the rim formed at the highest part of the splash breaks into drops as a conse-
quence of a Rayleigh-Taylor instability. We identify the transition to this instability
by a local Bond number, which we define using the downwards acceleration and the
rim size. We show that Bolocal ∝ We, leading to the value of Wecrit .

5.1 Introduction

The seemingly straightforward experiment of impacting a solid or liquid object on a
liquid surface exhibits many challenges for physical understanding, as was already
noticed more than a century ago [1–3]. The creation and collapse of an underwater
cavity has been studied extensively for a solid impacting a liquid surface [4–9], as
well as the formation of jets resulting from the collapse of this cavity [10–14]. The

∗I.R. Peters, J.M. Gordillo, and D. van der Meer, Splash formation and droplet ejection after disc
impact on a liquid surface, Preprint (2012)
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first event that is visible after an object hits a liquid is however the splash. It is formed
by the liquid that is moving upwards close to the downwards moving object, which
initially can be considered as a Wagner problem, under the condition that the object
can locally be approximated as flat [15, 16]. When the object is not locally flat, a
splash will be formed provided that certain conditions are fulfilled. These conditions
can sometimes be as subtle as the wetting properties of a smooth sphere, as was
shown by Duez et al. [17].

The approximation of the impact of a flat plate allows for analytical investiga-
tions, and is also accessible by experiments and numerical simulations. Self-similar
solutions for the case without surface tension (We→ ∞) have been found by [18] for
the initial stage after impact, whose scaling exponents were already noticed by [19].
Later, this analysis was expanded in order to calculate the hydrodynamic load on a
flat surface close to impact [20].

The liquid that is thrown upwards due to the impact of an object develops in a thin
sheet with a cylindrical rim on top of it [21]†. This rim is susceptible to instabilities,
which can result in the ejection of droplets. Finding the nature of instabilities that
result in the formation of droplets has been the motivation for many studies.

In [23], it is argued that the crown formation is the result of a Richtmyer-Meshkov
instability, and the effect of interfacial curvature on liquid rims is discussed in [24],
again in the light of Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Deegan et
al. [25] showed that in a narrow range of parameters, this instability can develop in
a very regular pattern, which was later used [26] to experimentally show that the
wavelength of this regular pattern agrees with the predicted value corresponding to
a Rayleigh-Plateau instability. An analytical study [27] elaborates more on the in-
terplay between the Rayleigh-Plateau and the Rayleigh-Taylor instability. Lister et
al. [28] specifically isolated the Rayleigh-Taylor instability on a cylinder, tuning the
body force normal to the cylinder surface by tilting a liquid cylinder inside a liquid of
higher density. Finally, Lhuissier et al. [29] found that a Rayleigh-Taylor instability
is responsible for the formation of ligaments from the liquid rim observed in bursting
bubbles.

Although the Rayleigh-Plateau instability can play a role in the wavelength selec-
tion of the instability on the rim [26], it is not likely that this instability is responsible
for the ejection of secondary droplets. For droplets to be ejected, there needs to be a
clear direction to which the instability develops. Assuming that the rim has a cylin-
drical shape that is attached to the liquid sheet by surface tension, a Rayleigh-Plateau
instability would break this cylinder in droplets, but these droplets would still be at-
tached to the sheet. Therefore, a crown would be generated, but we would not see the
typical breakup and subsequent ejection of droplets that is observed in experiments.

†A similar rim is also observed by Clanet et al. [22], where they create a liquid sheet by impacting
a liquid jet on a circular target.
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By including surface tension into the analysis, we will show that self-similar
solutions exists for any value of the Weber number, which is then corroborated with
the aid of boundary integral (BI) simulations. Also, we show that the downwards
moving disc introduces a non self-similar term, for which we provide a correction
term. We account for viscous effects, which influence the splash very close to the
edge of the disc, by implementing the concept of a virtual origin. After introducing
the virtual origin we find an excellent match between the (inviscid) simulations and
the experiments, revealing the self-similar properties of the experimentally obtained
profiles.

In this chapter we argue that the deceleration of the splash plays a key role in the
ejection of droplets from the crown. Droplets will be ejected when the deceleration
a minus the gravitational acceleration g becomes more important than the surface
tension, which is expressed by the local Bond number at the tip of the splash:

Botip = ρ(a−g)R2
C/σ , (5.1)

with ρ and σ the density and surface tension respectively of water, and RC the radius
of curvature of the rim. We combine experiments, numerical simulations and theory
to show that the local Bond number at the tip of the splash is the relevant parameter
to predict the transition to the ejection of droplets.

The chapter is organized as follows. In §5.2 we experimentally describe the dif-
ferent spatial regions appearing after the impact of a solid disc against a free surface.
In this section we also show that, experimental results can be reproduced by using
potential flow numerical simulations. Making use of potential flow theory, we find
in §5.3 that the splash region possesses a self similar structure that depends only on
We for dimensionless times satisfying t � Fr3/4. In section §5.4 we find the thresh-
old value for the critical Weber number Wecrit above which the crown breaks up and
droplets are ejected. Conclusions are drawn in §5.5.

5.2 Experiments and comparison with boundary integral
simulations.

Our experimental setup consists of a disc with radius RD which we pull down through
a water surface at a constant speed VD using a linear motor. The linear motor ensures
that our disc always moves with a constant prescribed velocity. We record the events
using a Photron SA1 high speed camera. A more detailed description of the experi-
mental setup can be found in Chapter 4 or [9].

Fig. 5.1 shows the sequence of events occurring immediately after a circular
disc impacts perpendicularly with a constant velocity onto a free surface bounding
a deep water layer. From these images, it can be appreciated that a circular liquid
sheet is ejected out of the liquid bulk all along the perimeter of the disc. The sheet
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Figure 5.1: Six snapshots of the experiment at times T after disc impact, compared
with the corresponding results from the boundary integral simulations (yellow lines).
Disc radius is 20 mm, the impact speed is 1 m/s. The agreement between numerical
simulations and experiments is excellent once two precisions are made: First, in the
numerical simulations, the tip of the splash is unstable and therefore breaks earlier
than in experiments. For this reason, the splash in the experiment appears higher than
in the simulations. Second, the times corresponding to the experimental profiles are
those of the numerical ones plus a constant T0 ' 0.6 ms. The existence of this time
shift is related to viscous effects at the bottom of the disc and can be retained by
simply shifting the origin of the time by a constant value (virtual origin, see text).
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then propagates radially outwards, ‘informing’ the rest of the fluid of the solid body
impact. The liquid speeds inside the splash are much larger than the disc impact
velocity VD: indeed, observe that for a given instant in time, the distance traveled out
of the liquid bulk by the top part of the liquid sheet is much larger than the distance
traveled by the disc. This can also be seen clearly in Fig. 5.4(b), where the height
of the splash is much larger than the hardly noticeable distance traveled by the disc.
Also notice in Figs. 5.1 and 5.4 that initially the splash develops in time in a region
of characteristic length RS(T )� RD located very close to the disc edge, with RS

the typical distance traveled by the splash, defined in Fig. 5.2. We observe that the
liquid sheet can either breakup into drops or just retract into the liquid bulk without
breaking, depending on the impact velocity. If VD is sufficiently large, the rim at
the highest part of the sheet breaks into drops, provoking what we refer to as the
crown breakup. If, on the contrary, VD is sufficiently small, surface tension forces
and gravity pull back the edge of the rim into the liquid.

Since the impact Reynolds number Re = VDRD/ν , where ν indicates the kine-
matic viscosity of the liquid, is such that Re & O(104), we expect that viscous effects
are confined to thin boundary layers on the bottom of the disc. Thus, the velocity
field in most of the liquid volume is expected to be described using a velocity po-
tential and the time evolution of the free surface can be well predicted by using a
potential flow boundary integral method of the type used to describe the collapse of
cavities [30, 31], the ejection of Worthington jets [14, 32, 33] or the formation of
bubbles from an underwater nozzle [34, 35].

In Fig. 5.1 and 5.3 we show that numerical simulations very well reproduce the
experiments once the origin of times for the numerical simulations is shifted in time
by a quantity T0, which accounts for the effect of both the gas presence between the
plate and the free surface as well as the (small) width of the liquid boundary layer. We
conclude from these figures that the liquid flow can be accurately reproduced using a
potential flow description.

From both Fig. 5.1 and Fig. 5.2, it is clear that there exist two well-differentiated
spatial regions after a solid impacts a free surface. Indeed, using the (dimensional)
polar coordinates (R,θ) centered at the disc edge shown Fig. 5.2, we observe that
there exists an inner region R∼ RS(T )� RD, where the interface deforms apprecia-
bly and an outer region R� RS(T )� RD where the interface hardly changes from its
initial position. This experimental fact is essential to theoretically describe the time
evolution of the splash, as discussed in detail in the next section.

5.3 Theoretical description of the splash

In this section we will provide a theoretical description for the formation of the splash,
part of this analysis is analogous to [18]. From now on, distances, times, velocities
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Figure 5.2: Schematic drawing of the impact of the disc and generation of the splash.
We define the origin of our coordinate system at the edge of the disc for both the
cartesian and polar coordinate system. The point P, which we use as a reference point
to measure velocities and lengths in the splash, is defined where the slope of the
splash is −1. The splash region RS(T ) indicates at which distance from the edge of
the disc the free surface has deformed significantly. ` is the nondimensional interme-
diate length, which is much larger than the RS(T ), but small enough to approximate
the flow as 2-dimensional, as explained in § 5.3.

and pressures are made dimensionless using RD, RD/VD, VD and ρV 2
D as characteristic

length, time, velocity and pressure respectively. We start with deriving the flow field
close to the edge of the disc (r� 1), at times close to the moment of impact (t� 1),
and neglecting the deformation of the free surface (Section 5.3.1). After that, we use
this flow field as an outer solution which needs to match the boundary conditions in
the region r ∼ rS where we find deformation of the free surface. This matching leads
to self-similar solutions, which we confirm by rescaling the profiles that we obtained
using the numerical boundary integral method (Section 5.3.2). Finally, we show that
the self-similar scalings are fully recovered after we compensate for the downwards
motion of the disc, which introduces a non self-similar term (Section 5.3.3).

5.3.1 Flow field

Since rS(t)� 1, it is possible to define an intermediate length `(t) such that rS(t)�
`(t)� 1 at which the height of the interface hardly varies with respect to its initial
position. Since `(t)� 1, the velocity potential φ at the intermediate region can be
described using a two dimensional approach, which satisfies the following equation:

∇
2
φ =

∂ 2φ

∂x2 +
∂ 2φ

∂ z2 = 0 , (5.2)
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Figure 5.3: (a) Time evolution of the horizontal and vertical coordinates of point P.
Numerical results reveal that the scaling for both xp and zp follows the prediction of
equation Eq. (5.15) for α = 2/3. The results for zp slightly deviate from a pure power
law due to the real boundary condition at infinity in (5.11), which includes the non
self-similar term z, which is due to the downward motion of the disc. (b) Comparison
between the experiment and the simulation for the radial position of point P. The
green diamonds indicate the unmodified experimental data. Once the virtual origin
correction t0 is introduced to account for viscous effects, numerics (blue circles) and
experiments (red dots) are in excellent agreement. Deviations from the scaling is
expected when t ∼ 1, because the system can not be approximated as 2-dimensional
anymore.



80 CHAPTER 5. SPLASH FORMATION AND DROPLET EJECTION

subject to the following boundary conditions:

∂φ

∂ z
=−1 at z =−t ' 0 x < 0 , (5.3)

which is the kinematic boundary condition boundary condition imposed by the down-
ward moving disc,

φ ' 0 at z' 0 x > 0 , (5.4)

denoting the dynamic boundary condition at the free surface‡, and

φ → 0 for
√

x2 + z2→ ∞ , (5.5)

enforcing the fluid far away from the impact to be at rest.
Here, we used the cartesian coordinates (x,z) defined in Fig. 5.2 and have taken

into account the observations in Fig. 5.1: that for t� 1 (T � 20 ms in Fig. 5.1), the
splash develops close to the edge of the disc and that the interface is not appreciably
distorted in the intermediate region r ∼ `(t). The solution to the system (5.2)-(5.5)
can be found using standard transformal mapping techniques, yielding the complex
flow field

dω

dζ
≡ ∂φ

∂x
− i

∂φ

∂ z
= i+ iAr−1/2e−iθ/2

(
1+ 1

2 reiθ
)(

1+ 1
4 reiθ

)−1/2
, (5.6)

where i =
√
−1 and the constant A is determined by matching the velocity field given

in Eq. (5.6) with the numerical solution of the velocity field at r→ 1, which takes
into account the real, i.e., three-dimensional, geometry of the impactor and corre-
sponding flow. Fig. 5.4 shows a comparison for two instants of time, such that t� 1,
between the numerical calculated velocity field and the one given by Eq. (5.6), which
is valid in the intermediate region r ∼ `(t). The agreement is almost perfect when
the deformation of the free surface is minimal, as in Fig. 5.4(a). Fig. 5.4(b) shows
the influence of the splash region r ∼ rS, where there is a clear discrepancy between
the approach of Eq. (5.6) and the numerical solution. However, looking at the region
r ∼ `(t), where deformation can be neglected, the agreement is fully recovered.

Now, since the solution (5.6) constitutes the outer boundary condition for the
velocity field in the inner region r ∼ rS(t)� `(t)� 1, we are interested in the ap-
proximation of this equation in the limit r� 1, which yields,

∂ φ

∂ x
' Ar−1/2 sin(θ/2) ,

∂ φ

∂ z
'−1−Ar−1/2 cos(θ/2) (5.7)

‡Eq. (5.4) has been obtained by approximating the time-integrated unsteady Bernoulli equation for
very small values of t, which can be written as: φ ' φ(t = 0,z = 0,x > 0)− 1

2 |∇φ(t = 0)|2 t ' 0, and
taking into account that φ(t = 0,z = 0,x > 0) = 0.
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Figure 5.4: The analytical flow field given in Eq. (5.6) compares very favorably with
the numerical one once the constant A is set to 0.44. (a) At an extremely short time af-
ter impact, when the free surface has not yet deformed, the analytical solution agrees
with the boundary integral result in the full inner domain where r� 1. (b) At a later
point in time we observe that close to the splash region, where the deformation is ap-
preciable, the analytical flow field deviates from the numerical solution. Away from
the splash region, the agreement improves again.
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and the potential
φ '−z−2Ar1/2 sin(θ/2) , (5.8)

which will serve as a boundary condition to the problem of determining the free
surface shape and potential in the splash region.

5.3.2 Self similarity

In the frame of reference moving at the disc velocity, the splash region r ∼ rS(t)�
`(t) can be described by solving the Laplace equation (5.2) subjected to the following
boundary conditions at a given point in time:

∂φ

∂ z
= 0 at z = 0 x < 0 , (5.9)

which is the kinematic boundary condition at the bottom of the disc, and

∂φ

∂ t
+
|∇φ |2

2
+

κ

We
+

z
Fr

= 0 at z = f (x, t) x > 0 , (5.10)

which is the dynamic boundary condition at the free surface, with We = ρV 2
DRD/σ

the Weber number and Fr =V 2
D/(gRD) the Froude number. These equations need to

be complemented with the far field velocity potential in the region where the interface
is virtually undisturbed, i.e.,

φ →−2Ar1/2 sin(θ/2) for r→ ∞ . (5.11)

f (x, t) defines the position of the free interface, which satisfies the kinematic bound-
ary condition

∂ f
∂ t

=
∂φ

∂ z
− ∂φ

∂x
∂ f
∂x

at z = f (x, t) x > 0 , (5.12)

where
f (x, t = 0) = 0 and f (t,x→ ∞)→ t. (5.13)

Note that in the Bernoulli equation (5.10) we have used the interfacial curvature

κ =
∂ 2 f
∂x2

(
1+
(

∂ f
∂x

)2
)−3/2

(5.14)

to express the pressure jump across the surface, i.e., p = κWe−1. Since there is no
characteristic length scale in the system of equations (5.2) and (5.9)-(5.12), we expect
the existence of self-similar solutions of the type

φ = (t− t0)β
φ̄

(
x

(t− t0)α
,

z
(t− t0)α

)
, (5.15)



5.3. THEORETICAL DESCRIPTION OF THE SPLASH 83

which we now write as
φ = τ

β
φ̄(χ,η), (5.16)

with χ = x/τα , η = z/τα , and τ = t − t0. t0 can be an arbitrary constant, and the
shape of the free surface can be expressed as

f (x, t) = τ
αF(χ) . (5.17)

From the Bernoulli equation (5.10) we find, by comparing the first two terms, that
self-similar solutions can only exist if β = 2α − 1. By matching to the asymptotic
solution (5.11) we obtain 2β = α . Combining these two conditions then result in
β = 1/3 and α = 2/3. Thus, lengths are expected to scale with τ2/3 and velocities
with τ−1/3. Indeed, the system of equations that solve for both φ̄ and F reads, with
relative errors ∼ O(τ1/3)� 1,

∂ 2φ̄

∂ χ2 +
∂ 2φ̄

∂η2 = 0 , (5.18)

∂ φ̄

∂η
= 0 at η = 0 ,χ < 0 (5.19)

φ̄ →−2Ar̄1/2 sin(θ/2) for r̄→ ∞ , with r̄ =
√

η2 +χ2 (5.20)

1
3

φ̄ − 2
3

(
χ

∂ φ̄

∂ χ
+η

∂ φ̄

∂η

)
+ 1

2

[(
∂ φ̄

∂ χ

)2

+

(
∂ φ̄

∂η

)2
]
+

κ̄

We
+

ητ4/3

Fr
= 0

at η = F(χ) ,

(5.21)

with

κ̄ =
d2F
dχ2

(
1+
(

dF
dχ

)2
)−3/2

,

and

2
3

F−χ
dF
dχ

=
∂ φ̄

∂η
− dF

dχ

∂ φ̄

∂ χ
at η = F(χ) and F(χ)→ 0 for χ → ∞ .

(5.22)
Note that there is only one term that is breaking the self-similarity of Eqs. (5.18)-
(5.22), which is the last term of Eq. (5.21), i.e., ητ4/3Fr−1, due to the presence of τ

in it. There will therefore exist a self-similar solution whenever τ1/3� Fr1/4∼O(1),
with Fr = V 2

D/(gRD), i.e., for times shortly after impact, such that the disc has not
moved down such an extend that gravity starts to play a role.

Most importantly however, the Laplace pressure term κWe−1 in is self-similar.
This is because balancing the Laplace pressure term in the Bernoulli equation (5.21)
with the inertial terms on the left hand side and inserting the self-similar ansatz
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Figure 5.5: Time evolution of the splash region for a given value of the Weber num-
ber. The growth of the splash is much larger than the downwards displacement of the
disc. For a disc radius RD = 20 mm and an impact speed VD = 1 m/s, the dimension-
less times correspond to T = 0.1 ms, T = 0.8 ms and T = 2 ms.

(5.16)-(5.17) will give us 2β = α and β = 1−α , which is solved by exactly the
same exponents α = 2/3, β = 1/3 that we have just found by matching to the asymp-
totic solution of the flow field (5.11). It is this remarkable feature that warrants the
existence of self-similar solutions to the system (5.18)-(5.22) for every value of the
Weber number We.

Clearly, the solution of the system (5.18)-(5.22) needs to be found numerically.
It is, however, easier to solve the Laplace equation subjected to the unsteady bound-
ary conditions given by (5.10)-(5.12) and then express the solution in terms of the
variables χ , η and F defined in equations (5.16)-(5.17).

Fig. 5.5 shows the solution from the boundary integral method for one specific
Weber number at three instances in time, which all are in the regime τ � 1 where
we expect to find self similar solutions. In Fig. 5.6(c) we have rescaled the solution
of Fig. 5.5, according to (5.16). Inspecting all shapes in Fig. 5.6(a-d), we see that
indeed we find self similar solutions for a large range of Weber numbers, that only
depend on We. Fig. 5.7 shows that for We→ ∞ the solution becomes independent of
We, confirming the results of [18].
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Figure 5.6: Shape of the splash with all distances rescaled by τ2/3 for four different
values of the Weber number We. Each plot contains three instances in time (τ =
0.005, τ = 0.04, τ = 0.1). The shapes have first been translated such that point P is
in the origin of the plots, in order to better show the collapse of the shapes.
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Figure 5.7: Comparison of the self-similar shape of the splash (i.e., with all length
scales rescaled by τ2/3) for four different values of the Weber number. Differences
in the rescaled shapes are only observed for lower values of the Weber number, see
for example the shape for We = 68 and We = 9 in Fig. 5.6. For high Weber numbers
(We & 100) the rescaled shape hardly changes as a function of We.

5.3.3 Correction for non self-similar terms

From Fig. 5.3 it is clear that the vertical position zp of point P does not follow the
scaling τ2/3 strictly, except in the limit τ→ 0. This difference is caused by the down-
ward motion of the disc, which introduces the non self-similar term t in Eq. (5.13)§.
To recover the scaling, we need to introduce a constant Bz times τ:

(zp +Bzτ) ∝ τ
2/3 (5.23)

A similar correction is needed for the vertical velocity up at point P:

(up +Bu) ∝ τ
−1/3 (5.24)

Fig. 5.8(a) shows the position, velocity, and width of the splash at point P. All values
become independent of time after the proper rescaling. The same scaling is also
valid at the tip of the splash, as seen in Fig. 5.8(b), where we measure the radius of
curvature RC and velocity utip at the point where the velocity is purely normal to the

§A simple way to see why the disc introduces a non self-similar term is by looking at the vertical
distance between the disc and the undisturbed free surface: while this distance scales linearly with time
(because the disc has a constant velocity) all other lengths scale as τ2/3.
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Figure 5.8: Length scales and velocities in the splash rescaled by τ2/3 and τ−1/3

respectively. After proper rescaling, all the plotted values become independent of
time, which indicates the self-similar behavior. (a) The splash width, position and
velocity at the point P as a function of time. As expected from the analysis, the
horizontal position xp of point P as well as the width wp of the splash at point P are
proportional to τ2/3. Due to the term t in Eq. (5.13), a constant Bu is added to the
vertical velocity up and a term Bz times τ is added to the vertical position zp of point
P (see text). (b) Radius of curvature RC and velocity utip at the tip of the splash as a
function of time, where the tip of the splash is defined as the point where the velocity
on the surface is directed purely normal to the surface. Clearly, the same scalings
τ2/3 and τ−1/3 that we observe at the point P are also valid at the tip of the splash.

surface: φn � φs, where the subscripts n and s denote the partial derivative in the
normal and tangential direction respectively.

Fig. 5.9 shows the scaling of lengths (a) and velocities (b) for a wide range of
Weber numbers. As expected from the previous analysis, the rescaled values become
independent of We for large Weber numbers. The same holds for the correction terms:
Bz = 0.56±0.03 and Bu = 0.59±0.01 for We & 50.

5.4 Crown breakup transition

We have provided a scaling for the shape of the splash, and we have shown that the
splash possesses a self-similar shape for every value of the Weber number. We will
now have a closer look at the breakup of the splash into a crown. With the crown
breakup, we are referring to the detachment of ejected droplets from the tip of the
splash.

In order to find out when downwards acceleration is large enough to be respon-
sible for a growth of perturbations, we define a local Bond number at the tip of the
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Figure 5.9: (a) The positions xp and zp, the splash width wp, and the radius of cur-
vature RC at the tip of the splash, for different values of the Weber number. (b) The
vertical velocity up and the normal velocity at the tip utip as a function of We. Clearly,
all the rescaled values are independent of the Weber number for We & 100 (see also
Fig. 5.7). The rescaled values at the tip are taken at relatively low values of the We-
ber number, and therefore are not independent of We. The solutions are however still
self-similar, as is shown in Fig. 5.8(b) and Fig. 5.6.

splash using the radius of curvature and the acceleration at the tip, see Eq. (5.1).
Botip is corrected for gravitational acceleration, which means that if the downwards
acceleration is equal to the gravitational acceleration, we consider the acceleration as
zero.

The most difficult task is now to determine the local Bond number at the tip of the
splash Botip. From the numerical simulations, the local Bond number at the tip can
be obtained very accurate, but only in an indirect manner for most Weber numbers.
The reason for this is that the tip of the splash if unstable in the numerical simulations
for We & 30, as is explained in more detail later in this section. We will show that our
indirect measurements are plausible by comparing them to experimental data. The
local Bond number at the tip can be determined directly from the experiments, but
with a relatively large uncertainty. Both the experimental and numerical method of
determining the local Bond number will be explained now.

We obtain experimental values for Botip by tracing the tip of the splash, within
a time interval Ti with a duration of typically 3 ms, in high-speed movies taken at
5400 frames per second. A second-order fit to the position data versus time gives
us the mean acceleration a of the tip. We determine the radius of the rim RC by
measuring it graphically at the beginning and at the end of Ti, giving us a minimum
and maximum value for RC within the time interval. The experimental values for
Botip are shown in Fig. 5.11 in black symbols. The error bars are obtained by using



5.4. CROWN BREAKUP TRANSITION 89

0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01

0.012

τ

R
C

(a)

 

 

NodeDist = 0.005
NodeDist = 0.001

(b)

τ = 0.057

(c)

τ = 0.058

Figure 5.10: Influence of the node density on the tip of the splash, for We = 274. (a)
The radius of curvature RC at the tip has a minimum value comparable to the mini-
mum distance between the nodes. The radius of curvature increases as the cylindrical
rim grows in size, until the rim pinches off, and the radius of curvature starts again at
its minimum value. This process is sensitive to the node density, but has no influence
on the solution away from the tip, and is not present when We is small enough. (b)
The cylindrical rim at its maximum size before it pinches off, for a minimum node
distance of 0.001. (c) The same simulation as (b), just after the rim has pinched off.
The rim is removed from the simulation directly after the pinch-off because it does
not represent the physical situation (see text).

the minimum and maximum of RC, because the radius of curvature is the dominant
source of uncertainty, due to the squared appearance of RC in (5.1).

In the boundary integral simulations, the radius of curvature and acceleration can
be determined accurately at any moment of time. The tip of the splash, which is the
region in which we are interested, is however only stable in a limited range of low
Weber numbers. For higher Weber numbers (We & 30) a neck is formed below the
rim, leading to the pinch-off of the rim (see Fig. 5.10(b-c)). As soon as the pinch-
off has occurred, a new neck forms which pinches off a bit later. This induces a
series of pinch-offs in the numerics, which are unphysical for a number of reasons.
The first is that, due to axisymmetry, the droplet is tubular, much unlike the droplets
that are generated in experiments. The second is that the details of the pinch-off are
strongly dependent on the node density that is used in the BI simulations, as is shown
in Fig. 5.10, and therefore needs to be qualified as a numerical artifact. The series
of pinches influence both the length scale and the acceleration of the tip, such that it
is not possible to determine the local Bond number at the tip of the splash for high
Weber numbers in the simulations. Although the tip of the splash is unstable, the
rest of the splash is not influenced by these numerical artifacts. For this reason, we
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determine the local Bond number at point P (see Fig. 5.2), using the width wp as the
length scale and calculate the downwards acceleration at the same point. We will call
the local Bond number calculated at point P BoP.

In Fig. 5.11, the different methods of measuring the local Bond number are put
together. Using the lower reference point P on the splash shows that for We& 100, the
local Bond number is proportional to We (blue squares, Fig. 5.11), and we find that it
is constant in time. Comparing BoP with the experimental values of Botip however,
shows that the local Bond number is overestimated if we use BoP. Calculating the
local Bond number in the numerical simulations at different positions on the splash
results only in a vertical shift of the points in Fig. 5.11, which shows that we can
calculate the local Bond number at different positions by simply multiplying BoP by
a constant. For Botip, we determine this constant to be∼ 0.1 using the experimentally
measured local Bond number at the tip of the splash. The local Bond number at the
tip that we have deduced from BoP is shown in Fig. 5.11 with red circles. Clearly,
the transition to breakup into a crown occurs when the local Bond number at the tip
of the splash is of order unity.

The proportionality of the local Bond number with the Weber and the indepen-
dence of time number is not unexpected, because it results from the self-similarity
solution that becomes independent of We for large Weber numbers. Following the
self-similar solutions, we write the acceleration and typical length scale in dimen-
sional form as:

a =
V 2

D

RD
Caτ

−4/3 (5.25)

and
RC = RDCRτ

2/3 , (5.26)

where Ca and CR are dimensionless constants, independent of time and Weber num-
ber. Note that the acceleration and length scale is made dimensional using the disc
radius RD and impact velocity VD. Substituting (5.25) and (5.26) in (5.1), and using
the fact that a� g for large values of Wegives:

Botip 'CaC2
R

ρV 2
DRD

σ
=CaC2

RWe , (5.27)

clearly showing that the local Bond number is independent of time and proportional
to We.

Using the proportionality Botip ∝ We and the crown breakup condition that Botip

is of order unity around the transition, we can define a condition for the crown
breakup transition based on We that does not involve the local Bond number. Such a
condition is preferable, because whereas the local Bond number is difficult to deter-
mine, the Weber number is directly given by the experimental conditions. There in-
deed exists one critical Weber number Wecrit above which we always observe breakup
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RD (mm) Wecrit Fr Re

15 145±5 4.77 12573
20 135±19 2.51 14032
25 134±11 1.59 15630
30 142±19 1.18 17657

Table 5.1: Transition to crown breakup of the splash for different disc radii. The
value of the critical Weber number does not differ appreciably with the size of the
disc, where the Froude number and the Reynolds number at the transition show a
clear dependence on RD.

of the splash into a crown, as can be seen in table 5.1. The table shows the values
of We, Fr and Re at the crown breakup transition¶. Note that only the Weber number
always has approximately the same value at the transition, showing that the Weber
number is indeed the relevant parameter to indicate the transition to crown breakup
and droplet ejection.

5.5 Conclusions

We have studied the formation of a splash and the transition to the ejection of droplets
after the impact of a disc on a liquid by using boundary integral simulations, exper-
iments and theoretical analysis. Only by combining these three methods, we have
been able to analyze the full problem. Although each method has its limitations, ei-
ther in accuracy, stability or mathematical formulation, each method is able to reveal
specific parts of the problem unaccessible by the other methods. Using the overlap-
ping parts however, we accurately demonstrated the validity of each method.

By approximating the time just after disc impact (t � 1) as a 2-dimensional po-
tential flow problem, we have shown that there exist self-similar solutions of the
second kind for any value of the Weber number. These self-similar solutions ex-
ist because matching the inertial terms in the unsteady Bernoulli equation to the
far-field velocity gives the same scaling powers as matching to the surface tension
term. When the Weber number is increased to larger values (& 100), the shape of the
splash becomes independent of the Weber number. Both predictions are confirmed
by boundary integral simulations, by rescaling the calculated shapes for a wide range
of Weber numbers. We found the correct scaling for both the lengths (∼ τ2/3), and
velocities (∼ τ−1/3) at different positions in the splash: at the point P on the edge of
the splash, and at the tip of the splash. In the experiments, the same scaling is found

¶Clearly, We, Fr and Re can be related after calculating the disc velocity VD using the disc radius RD
and either of the three dimensionless numbers in table 5.1.
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Figure 5.11: The local Bond number measured in different ways as a function of We.
The blue squares are the local Bond numbers determined in the simulations at point
P, the red circles are these same values multiplied by 0.1. This multiplication factor
has been found by matching to the experimental values of the local Bond number at
the tip (black symbols). The green diamonds show the local Bond numbers measured
at the tip of the splash in the BI simulations, which is only possible for We . 30 (see
text). The shaded area indicates the range of experimental conditions in which we
observe the crown breakup transition. Note that this transition occurs when the local
Bond number is of order unity (dashed horizontal line).
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after introducing a small time-shift t0 which accounts for the viscous boundary layer.
We have shown that the transition to droplet ejection (crown breakup transition) is

caused by a Rayleigh-Taylor instability, by investigating the acceleration and size of
the rim. We experimentally determined that the local Bond number at the tip, based
on the downwards acceleration and corrected for gravity, is of order unity at the splash
transition. Theoretical analysis predict, and numerical simulations confirm that, Botip

depends linear on the Weber number for We & 100. From this linear dependence
between Botip and We, we have concluded that the splash transition can be identified
by a critical Weber number, which we indeed find in the experiments.
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[15] H. Wagner, Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten,
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6
The multi-fluid impact experiment∗

When a round disc impacts on a water surface, a cavity is created that collapses
under the influence of hydrostatic pressure, leading to a pinch-off where two jets are
formed, one shooting upwards, and one downwards. If the water surface is covered
with a layer of oil, the same is true for the cavity, providing a clear picture of what
happens within the liquid after the pinch-off: The jet initially exists of only oil, in
agreement with earlier theoretical predictions [1]. When the jet develops further and
becomes thicker, the jet is composed mainly of water, but with a stable core of oil that
extends all the way down to the bulk. We explore how the oil-water contents of the jet
depends on the initial thickness of the oil layer and the Froude number.

In a second set of experiments we prepare a system where no air is involved,
only oil and water. By pulling down the disc starting from the oil-water interface, we
observe universal shapes for Fr∗→∞, where Fr∗ is the Froude number corrected for
the reduced density difference between the two phases.

6.1 Introduction

The splashes and jets that are formed after the impact on a liquid surface have been
observed and photographed by Worthington at the end of the nineteenth century [2].
In search of explanations for the observed phenomena, the experimental observations
were soon extended to below the liquid surface [3], which led to the conclusion that

∗I.R. Peters, M. Madonia, D. Lohse, and D. van der Meer, The multi-fluid impact experiment,
Preprint (2012)
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the jet is formed due to the collapse of a surface cavity. Besides observing the shape
of the cavity, which obtained enormous impulse due to the development of digital
high-speed imaging techniques, the availability of particle image velocimetry (PIV)
has made it possible to directly measure the velocities in the bulk of the liquid [4–6].

There is however little experimental information on the origin of the jet that forms
after the collapse of the above described cavities. The behavior of jets long after they
have formed has been studied extensively [7], most specifically their breakup into
droplets, but the formation of the jet we examine has only been studied numerically
and theoretically where experiments mainly were used for verification [1, 8, 9]. The
lack of direct experimental information on the structure and formation of the jet is
possibly explained by the numerical simulations of [1], where it was found that the
liquid in the jet originates from a thin layer on the surface of the collapsing cavity.
This is difficult to demonstrate using standard PIV techniques, which are not suitable
for visualization close to free surfaces. Reflections of laser light on the free surface
make it difficult to visualize tracer particles close to a free surface, and in addition,
tracer particles tend to cluster on the free surface. Oil however, can easily be used
as a tracer liquid at free surfaces, as it naturally spreads evenly over a free surface
provided that the oil layer is sufficiently thick.

Besides fundamental interest in jet formation, the behavior of immiscible liquids
is important for applications like flow-focusing devices [10, 11], where a liquid jet
breaks up surrounded by a co-flowing liquid. The behavior of oil floating on water
is of interest for cleaning techniques after oil spills on the ocean [12], or, when re-
moving the oil is not possible, to enhance dispersion of the oil without the use of
additional chemicals [13]. One might also wonder what happens to the spilled oil
when it starts to rain, and millions of droplets impact the floating oil layer. Even
certain geophysical flows, for example during solidification in the early stages of de-
velopment of planets, can be understood using the behavior of two immiscible liquids
[14, 15].

We will report the results from two kinds of experiments in this chapter. Af-
ter introducing the experimental setup and the relevant experimental parameters in
Sec. 6.2, we start with the impact on a layer of oil floating on a water surface in
Sec. 6.3. This experiment provides excellent experimental insight into the process
of jet formation and the behavior of the liquid in the bulk after the pinch-off. More
specifically, we will provide direct experimental proof of the model for jet formation
after cavity collapse proposed in [1], described above. In agreement with this model,
our experimental results confirm that the stagnation point flow after the pinch-off is
very weak. In Sec. 6.4, we report experiments where we start with the disc at the
oil-water interface. When the disc moves down, it drags along the oil, which then
obtains a particular profile. We observe how these profiles depend on the velocity of
the disc, and find that for high velocities, there exists a universal profile. We conclude
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Figure 6.1: Schematic view of the experiment, with disc radius RD and disc velocity
VD. In (a) we impact the disc on a layer of oil of thickness Doil that is floating on
a deep layer of water. For this situation we define the vertical coordinate h = 0 at
the undisturbed oil-air interface. In (b) we start with the bottom of the disc at rest
at the interface between a deep layer of oil on a deep layer of water, after which we
pull down the disc at constant speed VD. We define h = 0 at the undisturbed oil-water
interface.

in Sec. 6.5

6.2 Experimental setup

The experimental setup consists of a water reservoir with a cross section of 15 cm by
15 cm and a height of 50 cm. A linear motor that is mounted below the tank pulls a
disc through the water surface at a constant speed, by means of a thin rod connecting
the linear motor with the disc. The disc is accelerated with a maximum acceleration
of 42 m/s2 until the desired velocity VD is reached. The events are recorded with a
Photron SA2 high speed camera at frame rates ranging from 1 to 8 kHz. Our main
control parameter is the Froude number, which is defined as the disc speed VD, made
dimensionless by the disc radius RD and the gravitational acceleration g:

Fr =
V 2

D

gRD
. (6.1)

In the case where we pull down the disc from the oil-water interface, we have to
adjust the Froude number because of the decreased effect of gravity due to the small
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density difference between the oil and the water phase. The effective Froude number
Fr∗ can be obtained by replacing g in (6.1) by the effective gravitational acceleration
g∗, as one would use to determine the wave speed of gravitational waves on a density
interface g∗ = g(ρw−ρo)/(ρw +ρo) [16], yielding

Fr∗ =
V 2

D

gRD

(
ρw +ρo

ρw−ρo

)
, (6.2)

where ρw and ρo are the densities of water and oil respectively. In our experi-
ments we use sunflower oil, which has a density ρo = 900 kg/m3 and viscosity
ν ∼ 50 ·10−6m2/s. Next to demineralized water we use a solution of table salt in
water to increase the density of the water phase. We dissolved 1.0 kg of table salt in
5000 ml water, resulting in ρsw = 1140 kg/m3.

6.3 Impact on a layer of oil

We impact a disc on an oil layer floating on a deep layer of water. In Fig. 6.2 we
compare a series of snapshots from an impact experiment on pure water with the
corresponding ones from an impact on water covered by a layer of oil with thickness
Doil = 15 mm†. We use the same disc (RD = 20 mm) and impact speed (VD = 1.0 m/s)
in both cases. We first observe a splash (Fig. 6.2(bi)), where in the second experiment
(Fig. 6.2(bii)) the oil is thrown up around the edge of the disc [18]. Subsequently, a
surface cavity is formed which collapses under the influence of hydrostatic pressure
(Fig. 6.2(b-d)). In the oil-layer experiment the surface of this cavity is covered with
a thin layer of oil, which is difficult to discern in Fig. 6.2(cii), but can be clearly
distinguished in Fig. 6.2(dii): The entrained air bubble pinches off and is surrounded
by oil.

We can estimate the typical thickness of the oil layer that is covering the cavity
in the expansion phase, by taking a cross-section at the pinch-off depth and assuming
that flow is directed mainly radially in the time interval between maximum expan-
sion and pinch-off [5]. The oil layer that sits on the cavity surface needs to be thinner
when the radius of the cavity is larger, because the surface of the cavity that it covers
is larger. This can be quantified using volume conservation together with the assump-
tion of purely radial flow. First, we measure the radius of the oil Roil at the pinch-off
depth at the moment of pinch-off. In Fig. 6.2(dii), Roil = 5.2 mm. At the same depth,
the cavity reached a maximum radius Rmax = 26.4 mm. The thickness of the oil layer
at that point is then:

D f ilm =
√

R2
max +R2

oil−Rmax (6.3)

†One may note from Fig. 6.2 that the shape of the cavity is very similar for the experiments with
pure water and with an oil layer. Only the depth where the pinch-off takes place has shifted and the
shape of upper half of the cavity at pinch-off is slightly different.
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Figure 6.2: Snapshots of two experiments: (ai-ei) impact on a water surface, (aii-
eii) impact on an oil layer covering a water surface. For both experiments, RD =
20 mm and VD = 1.0 m/s. The thickness of the oil layer is Doil = 15 mm (due to the
perspective view, the layer appears slightly thicker in the image). (a) The disc moves
down at a constant speed of VD = 1 m/s. (b) A splash is formed, which is similar
in both cases. (c) A cavity is created, which for the second experiment is covered
with a layer of oil on the inside. In this case, ripples with a short wavelength appear
suddenly at the oil-water interface at t ≈ −68 ms and onwards. (d) We define t = 0
when the entrained air pinches off. In the second experiment, the pinch-off point on
the axis of symmetry is surrounded by oil, preventing water to contact the air. (e)
A thin jet shoots up, which in the second experiment consists only of oil coming
from the surface of the cavity. In the bulk there is a stable entrained column of oil,
indicating the absence of radial flow in the stagnation point (= pinch-off point) area
after the pinch-off.
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For the experiment in Fig. 6.2 we find D f ilm ≈ 0.5 mm.
Waves with a typical wavelength of λ ≈ 2.5 mm appear suddenly at t ≈−47 µs,

visible in Fig. 6.2(dii) (the moment of appearance depends on the experimental con-
ditions). These waves are most probably capillary ripples concerning the condition
λ � 2π` [19], in which ` is the capillary length similar to that of water‡. It is not
clear which event has triggered these waves, possible explanations could be found
in the breakup of the oil layer on the cavity surface. This layer is likely to become
thinner as the length of the cavity increases and can become unstable if the layer is
thin enough. The origin of these waves is however not a subject of this paper, and in
all the cases that we study, the waves only exist below the pinch-off depth and are not
influencing our measurements.

Before the pinch-off, the flow around the cavity is mainly radial, with a strongly
increasing velocity towards the moment of pinch-off [5]. After the pinch-off, the ra-
dial flow suddenly is converted into a vertical flow, resulting in the formation of a thin
jet. Looking at the pure water experiment (Fig. 6.2(ei)), it remains unclear where the
liquid in the jet originates. However, in Fig. 6.2(eii) we observe that the jet initially
consists of only oil, from which we can conclude that the jet is formed from liquid
very close to the surface of the cavity. The dynamics of the jet formation becomes
even more clear when looking in the bulk, where a stable cylinder of oil is entrained.
The stability of this oil cylinder as seen in Fig. 6.2(eii) indicates that directly after the
pinch-off, there is no more radial flow around the pinch-off point, and that the (radial)
inflow into the jet is localized near the base of the jet. The observations that the jet is
formed from the surface of the cavity and the non-persistent radial flow confirm the
model for jet formation of Gekle et. al [1]. This is in contrast to the hyperbolic jet
[8], where liquid from the bulk would enter the jet.

Only a considerable amount of time after the jet starts to form, water is joining
into the jet. Nevertheless, in the center of the jet we always observe a stable core of
oil, which is connected to the cylinder of oil observed in the bulk. Fig 6.3 shows the
composition of the jet after the water as joined for two different values of Doil . The
upper part of the jet still consists of only oil, which connects to the oil core in the
lower part of the jet. The moment at which the water joins into the jet depends on the
initial thickness of the oil layer Doil , which is reflected in the thickness of the jet when
the water joins. If Doil is large enough, a layer of oil on the outside of the jet can be
observed as shown in Fig. 6.3(a). For smaller Doil , Fig. 6.3(b), this layer is either too
thin to observe, or has disappeared due to breakup of the oil film [20, 21]. Finally, if
the initial oil layer is thin enough, a Rayleigh-Plateau instability develops on the oil
cylinder [10, 22] inside the water phase, which eventually leads to the formation of
oil droplets inside the jet (Fig. 6.4).

‡Strictly speaking, the condition λ � 2π` [19] should be modified because gravity is not directed
perpendicular to the disturbance. Such a modification would however be in favor of the capillary waves.
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(e)
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(d)

(b) (c)

Transition point

Figure 6.3: The composition of the jet after the water has joined, for (a) Doil = 15 mm
and (b) Doil = 10 mm. Both images are taken 176 ms after the disc has impacted oil
surface, RD = 20 mm. The upper part of the jet contains only oil, the lower part has
an oil core in the center, which is surrounded by water. For the thicker oil layers (a),
the outside of the jet is clearly covered by oil. For thinner oil layers, it is not clear
whether the lower part of the jet is covered with an oil layer on the outside (see text).
(d) and (e) are the same as (a) and (b), only colored red to indicate where the oil is.
(c) A schematic view of the jet composition: The oil in the upper part of the jet is
connected to the undisturbed oil layer far away via the (thin) oil layer on the surface
of the jet. The oil core in the center of the jet extends all the way into the bulk, as is
visible in Fig. 6.2(eii).
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droplets

oil cylinder

Figure 6.4: Snapshot of a jet 0.18 s after impact on a thin layer of oil (Doil = 6.5 mm,
RD = 20 mm). The oil core in the center of the jet breaks up into droplets due to a
Rayleigh-Plateau instability.

6.3.1 Influence of oil layer thickness

As shown in Fig 6.3, at some point in time after the pinch-off water will start entering
the the jet and moving upward with the rest of the jet. This leads to a structure as
sketched in Fig. 6.3(c) where the oil-water interface of the core of the jet connects to
the oil-water interface at the free surface. The thicker the initial oil layer, the later
the water will join into the jet. To quantify the amount of water that joins the jet,
we measure the radius of the jet R jet at this joining point at that moment in time at
which the joining point has reached a height of two disc radii above the initial free
surface of the oil. A small value of R jet indicates the presence of water in an early
stage of jet development and, consequently, that a larger fraction of the jet consists
of water at any fixed moment in time. Figure 6.5(a) shows how R jet depends on the
oil layer thickness Doil , where both length scales are normalized by the disc radius.
For Doil/RD . 0.6, R jet grows linear with the oil layer thickness. This relation breaks
down for thicker layers, which could be related to the limited growth of the jet due
to gravity: For Doil/RD = 0.875, the upwards motion of the jet is stopped and the jet
falls back under the influence of gravity before the water phase has reached the point
where we measure the jet radius. During this reversal of the jet movement, one can
expect that the inertial stretching of the jet [7] is decreased due to gravity, resulting in
thickening of the jet. This then would explain why the growth of R jet as a function of
Doil increases when the maximum thickness is approached. In Fig. 6.5(b) we plot the
time Tjet , normalized by the gravitational time scale Tg = (RD/g)1/2, against the oil
layer thickness. We defined Tjet as the time between the moment of initial formation
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Figure 6.5: (a) The radius of the jet R jet at the point where water is joining the
jet, measured at h = 2RD for a Froude number Fr = 5.1. R jet initially increases
approximately linear with the oil layer thickness Doil . The dashed line is a linear
fit to the lower three black data points. For Doil/RD = 0.875, the water does not
reach the height h = 2RD due to gravity. Black symbols are obtained with RD =
20 mm (VD = 1.0 m/s), the red symbols are obtained with a smaller disc RD = 15 mm
(VD = 0.87 m/s). (b) The time Tjet it takes for the water inside the jet to reach the
height h = 2RD, divided by the gravitational time Tg = (RD/g)1/2. Tjet and Tg are of
comparable magnitude, indicating the importance of gravity.
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Figure 6.6: (a) The radius of the entrained oil column Roil at the moment of pinch-off
as a function of the oil layer thickness Doil . We measure the radius Roil at the same
depth as where the pinch-off takes place. The impact speed VD was 1 m/s and the disc
radius RD was 20 mm for all experiments (Fr = 5.1). The pinch-off depth coincides
with the oil-water interface when Doil ≈ 45 mm for this set of experiments, indicated
by the vertical dashed line. The shaded area bounded by the dashed lines indicates
the range of linear fits that fit the four data points in the range 0.5 ≤ Doil/RD ≤ 1.5.
The solid line corresponds to Eq. (6.5). Error bars are obtained by repeating the
experiment and taking the standard deviation. (b) The film thickness (determined
using Eq. (6.3)) divided by the oil layer thickness.

of the jet and the moment that the joining point has reached h = 2RD. We indeed find
that the Tjet and Tg are of the same order of magnitude, so we can expect gravity to
be influencing the evolution of the jet.

At the moment pinch-off (Fig 6.2(dii)), the layer of oil on the surface of the cavity
collides at the axis of symmetry. After the pinch-off, a small part of this oil goes into
the jet, but the largest part is left behind to form a cylinder of oil as can be seen in
Fig. 6.2(eii). When the radius of the cavity is large, the layer of oil on the surface
of the cavity is thin. During the collapse, the radius of the cavity decreases, and as a
result the thickness of the oil layer increases. At pinch-off, the oil layer has reached
its maximum thickness, and can be measured as the radius of the oil at the pinch-off
depth Roil .

Figure 6.6(a) shows the radius of the oil at the pinch-off as a function of the
initial oil layer thickness. As expected, Roil increases with increasing Doil . Clearly,
when the pinch-off takes place place within the oil layer, Roil is not defined anymore.
This will be the case when the oil layer thickness Doil is the same or larger than the
pinch-off depth Dpinch, indicated by the vertical dashed line in Fig. 6.6(a).
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Looking at the other end of the data set in Fig. 6.6(a), it appears that Roil does
not approach zero with Doil → 0. Although it seems that there is only one data point
(the lowest one in Fig. 6.6(a)) that falls outside the linear trend, we must stress that
the experimental result is very reproducible; each data point is based on about six
repeated experiments. An explanation might be found by looking at the oil film
thickness when the cavity has reached its maximum expansion. Fig. 6.6(b) shows the
ratio between the film thickness D f ilm and the oil layer thickness Doil as a function
of the oil layer thickness, where we calculated D f ilm using Eq. (6.3). For a large part
of the experimental range the ratio D f ilm/Doil increases with Doil , but at very thin oil
layers, the ratio is constant within experimental errors. A constant ratio is D f ilm/Doil
reasonable, because it simply means that the film thickness is proportional to Doil for
small values of Doil . This constant ratio also implies that Roil will approach zero,
only in a different way as we will explain now. Using the approximate constant value
0.03 for the ratio D f ilm/Doil , we can write

D f ilm ' 0.03Doil, (6.4)

and after substituting this into (6.3), we can write an equation for Roil as a function
of Doil:

Roil '
√
(0.03Doil +R2

max)−R2
max, (6.5)

where we take Rmax ≈ 25 mm, which is valid in the range that we are interested in.
Equation 6.5 is shown as a black solid line in Fig. 6.6(a). Testing this relation for
smaller values of Doil is however not straightforward, as it is very difficult to create
very thin stable oil layers.

6.3.2 Influence of impact speed

In Fig 6.7 we vary the Froude number by changing the impact speed of the disc.
Increasing the Froude number results in more elongated cavities because the collapse,
which is initiated by gravity, is slower compared to the disc velocity for higher Froude
numbers. A longer cavity has more surface area, over which the oil has to spread.
Continuing this argument, increasing the Froude number will decrease the thickness
of the oil layer on the surface of the cavity, and consequently the radius of the oil at the
pinch-off Roil will be smaller. This would explain the decreasing Roil for increasing
Froude numbers.

For higher Froude numbers however, Roil remains approximately constant. Al-
though the uncertainty is larger, there is certainly not the same steep decrease as we
observe for Fr . 3. A possible explanation is that for these high velocities the oil
does not cover the full surface of the cavity, and the depth to which the oil reaches
saturates. We were however not able to obtain a clear picture of what happens due to
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Figure 6.7: Radius of the entrained oil column Roil at the moment of pinch-off as a
function of the Froude number. The oil layer thickness Doil was 15 mm and RD =
20 mm for all experiments. The error bar increases a lot for the highest impact speed,
due to the surface seal (see text).

the appearance of a surface seal, where the splash is drawn inwards due to Bernoulli-
suction of the air flow, and the cavity is distorted [5]. The surface seal is also the
reason for the increased uncertainty at Fr = 10.

6.4 Disc started from oil-water interface

We now turn to the experiments described by the setup in Fig. 6.2(b) in which we
start the disc at the oil-water interface, accelerate it with a high acceleration to a
desired velocity VD and continue to move down with this velocity. The thickness of
the oil layer in these experiments was 45 mm, which is thick enough to be considered
as infinite. We verified this by performing the same experiment with an oil layer of
90 mm and 135 mm, which did not influence our results.

Figure 6.8 shows two experiments where we pull down the disc from the oil-
water interface. Initially the disc is at rest, we align the bottom of the disc with the
oil-water interface. Then, the disc is set into motion and in a short period of time
obtains a constant speed VD

§. A vortex ring appears just above the disc, along with a
smooth profile in the center which connects to the thick oil layer at the top. We are
interested in this smooth profile, which has similarities with the shapes seen in [23],

§With an acceleration of 42 m/s2, it takes 0.024 s to reach VD = 1 m/s (Fr∗ = 43). The duration of
the experiment in that case is 0.08 s. The acceleration does not significantly influence the experiment,
as can be appreciated in Fig. 6.9
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τ = 2 τ = 3 τ = 4

(ci)

(cii)

(ai) (bi)

(aii) (bii)

Figure 6.8: Snapshots from two experiments where the disc (RD = 20 mm) starts
from the oil-water interface, both with added salt in the water phase, for two different
values of the effective Froude number Fr∗: (ai-ci) VD = 0.25 m/s, Fr∗ = 2.7; (aii-
cii) VD = 1.00 m/s, Fr∗ = 43. Corresponding pictures have been taken at the same
dimensionless time τ . In the top experiment gravity has a clear influence on the
shape of the entrained oil column. The bottom experiment is in the inertial regime,
where gravity has negligible influence. Near the disc a vortex ring appears, but the
funnel-shape of the entrained oil is unaffected.
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(c)(a) (b)

Figure 6.9: Entrained oil for experiments using demineralized water as the heavy
fluid (blue lines), and salt water (red lines). An experiment with reduced acceleration
(19 m/s2 in stead of 42 m/s2) is indicated by the black line. (a) τ = 2; (b) τ = 3; (c)
τ = 4.

although that study concentrated on the formation of the vortex ring.
In order to compare the experiments for different disc speeds, we define a di-

mensionless time τ = tVD/RD (at equal dimensionless times the disc has reached the
same vertical position below the undisturbed oil-water interface, measured in units of
the disc radius RD). Comparing Fig. 6.8(ai) and (aii), we see that at τ = 2 the shape
of the entrained oil is very similar for Fr∗ = 2.7 and Fr∗ = 43, although the amount
of vorticity in the vortex ring is much larger for the higher speed. At τ = 3 the effect
of buoyancy becomes visible, where a difference in the shape of the entrained oil
between Fig. 6.8(bi) and (bii) is appreciable. In the last frame, Fig. 6.8(ci) and (cii)
at τ = 4, the oil in the case of Fr∗ = 2.7 has clearly moved back up due to buoyancy,
leaving only a relatively straight cylinder of oil behind. For Fr∗ = 43, the shape is
still unaffected by gravity.

In order to see what the effect of the density difference is on the shape that we
obtain at high Froude numbers, we performed experiments with demineralized water
(ρ = 998 kg/m3) at VD = 1 m/s (Fr∗ = 99) and with salt water (ρ = 1140 kg/m3)
at VD = 1.5 m/s (Fr∗ = 97). The obtained profiles are shown in Fig. 6.9. Although
there is a factor two in the density difference between the water and the oil phase,
the difference in the profiles is negligible, which leads us to the conclusion that the
shape of the entrained oil column does not strongly depend on the relative density
difference between the fluids. The use of salt water does however have an exper-
imental advantage: The oil-water interface becomes less contaminated with oil and
water droplets, which reduces the time that we need to wait between two experiments
until the surface is smooth enough to clearly observe formation of the profile of the
entrained oil. For experimental convenience, we used salt water in all experiments
reported in this section.

In Fig. 6.10 we determined the profiles of the entrained oil for a wide range of
Froude numbers. Every colored profile in Fig. 6.10(c) consists of several lines, ob-
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tained by repeating the experiment. The collapse of lines with the same color indicate
the reproducibility of the experiment. We repeated the experiments by decreasing the
acceleration of the disc by a factor two to make sure that the observed profiles are not
influenced by the initial startup motion of the disc, and we can assume that VD is ob-
tained instantaneously. We have included the profiles resulting from the experiments
with reduced acceleration in Fig. 6.10, showing that we are indeed only probing the
influence of Fr∗ by comparing the profiles.

Clearly, at τ = 2 (Fig. 6.10(a)), there is no difference in the shape for any value
of Fr∗ reported here. At τ = 3 (Fig. 6.10(b)), only the lowest values of Fr∗ show a
different profile. Figure 6.10(c), at τ = 4, shows that we find shapes independent of
the effective Froude number for Fr→ ∞.

The appearance of differences in the shapes shown in Fig. 6.10 are a result of
gravity that is pushing the oil phase upwards. This will only happen if the time is
long enough for gravity to become more important than the inertia that is pulling the
oil phase down. We can predict the moment that differences appear by comparing the
inertial time scale

tin ≡
RD

VD
(6.6)

to the gravitational time scale

tg ≡

√
RD

g∗
, (6.7)

with g∗ = g(ρw− ρo)/(ρw + ρo). Gravity is expected to become play a role when
t & tg, which, after dividing both sides by the inertial time scale can be written as

τ
2 & Fr∗, (6.8)

where we have used t/tin ≡ τ . If we now again look at Fig. 6.10, we expect according
to Eq. (6.8) to see a difference for Fr∗ . 4 at τ = 2, for Fr∗ . 9 at τ = 3, and for
Fr∗ . 16 at τ = 4. These predictions agree nicely with the moment that we observe
differences in the experimental profiles in Fig. 6.10.

6.5 Conclusions

By impacting a disc on a layer of oil floating on a water surface, we have provided
experimental insight into the process of jet formation and the behavior of the liquid in
the bulk after the pinch-off of a surface cavity. We have shown that the jet that forms
after the pinch-off initially is formed from liquid that is very close to the surface of
the cavity, and that the stagnation point flow after the pinch-off is very weak; both
observations are in agreement with an earlier theoretical and numerical study [1].
Longer times after the jet formation, when the water joins the jet, we observe a stable
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Figure 6.10: Profiles of the entrained oil, for effective Froude numbers ranging from
2.7 to 97. We observe universal profiles for Fr∗ → ∞, each color in the image cor-
responds to one Froude number. (a) at τ = 2, all shapes collapse. (b) at τ = 3, a
difference becomes visible for Fr∗ = 2.7 and Fr∗ = 5.3 (c) τ = 4, for increasing Fr∗,
the shapes of the entrained oil converge to a single universal profile independent of
Fr∗. The position and size of the disc is indicated by the horizontal solid black line.
In (b) the disc coincides with the bottom of the image; in (c) the disc is below the
image. The profile of the oil-water interface is not shown in the vicinity of the disc
because the profile was not visible due to the vortex ring, see Fig. 6.8.
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core of oil in the center of the jet that extends all the way down into the bulk. We
have determined how the oil content depends on the oil layer thickness and impact
speed.

In a second set of experiments we started the disc at the oil-water interface and
pulled it down at a constant speed from there. The oil layer was thick enough to be
considered infinite. We observe that, next to the formation of a vortex ring, a smooth
profile is formed by the oil that is being entrained. For large values of the corrected
Froude number the shape is unaffected by gravity, resulting in a universal shape that
is independent of the Froude number as well as the relative density difference, at least
for the density differences studied.
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7
Highly focused supersonic microjets:

numerical simulations∗

By focusing a laser pulse inside a capillary partially filled with liquid, a vapor bub-
ble is created which emits a pressure wave. This pressure wave travels through the
liquid and creates a fast, focused axisymmetric microjet when it is reflected at the
meniscus. We numerically investigate the formation of this microjet using axisymmet-
ric boundary-integral simulations, where we model the pressure wave as a pressure
pulse applied on the bubble. We find a good agreement between the simulations and
experimental results in terms of the time evolution of the jet and on all parameters
that can be compared directly. We present a simple analytical model that accurately
predicts the velocity of the jet after the pressure pulse and its maximum velocity.

7.1 Introduction

In recent experiments by Tagawa et al. [1], it was found that microscopic jets that
travel at a speeds up to 850 m/s can be created by focusing a laser pulse inside
a liquid-filled capillary that is open at one end. Besides the high velocity, the jets
were found to be highly reproducible and controllable. The laser pulse used in the
experiments, which has an energy of the order of 100 µJ, results in the formation of a
vapor bubble accompanied by a pressure wave [2, 3]. This pressure wave is reflected

∗Submitted as: I.R. Peters, Y. Tagawa, N. Oudalov, C. Sun, A. Prosperetti, D. Lohse and D. van der
Meer, Highly focused supersonic microjets: numerical simulations, J. Fluid Mech. (2012)
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at the free surface, where the jet is formed. The shape of the free surface was found
to play a crucial role in the formation of the jet, as it is responsible for focusing the
liquid into a jet.

In this chapter, we present numerical simulations which accurately reproduce
the evolution of the shape and the velocity of the jets observed in the experiments
described in [1]. We use axisymmetric boundary integral (BI) simulations where we
model the effect of the traveling pressure wave by applying a short pressure pulse
on a bubble with a constant amplitude ∆p and a (short) duration ∆t such that the
resulting impulse per unit area ∆p∆t is of the order of 10 Pa ·s. Figure 7.1 shows the
formation of a jet in the experiment together with a result from our boundary integral
simulations. We provide a theoretical analysis that gives the correct scaling for the
jet speed as a function of the contact angle, bubble distance and pressure pulse.

Jets that are formed from a meniscus have been studied in several cases with
different sources for the driving pressure: In [4], the pressure was provided by surface
tension, and Antkowiak et al. [5] created a pressure pulse by impacting a test tube on
a hard surface. In [6] and [7] the driving was provided by hydrostatic pressure. In all
these cases the scale of the jets is much larger and the velocities are at least an order
of magnitude smaller than those that we study here.

The formation of the jet is different from the jet that follows from the collapse of
a liquid void [8–11], where the jet initiates from a geometric singularity. In that case
the size and the initial speed of the jet following the collapse of a cavity is therefore
not set by the typical size and velocity of the experiment. Neither does the theory
of a hyperbolic jet [12] apply here. The main ingredient of the latter is a hyperbolic
radial inflow from infinity, which in our setup is impossible due to the confinement
of the tube. In fact, the jet that we study scales with the size of the capillary, and the
speed is controlled by a combination of driving and geometry.

The chapter is organized as follows. First we introduce the numerical method in
§ 7.2, after that we discuss the results from the numerical simulations and compare
these results to the experiments in § 7.3. We then derive an analytical model in § 7.4,
and we end with the conclusions and discussion § 7.5.

7.2 Numerical setup

We perform numerical simulations using a boundary integral code, as described
in [13], [14], [15] and [16]. Here, we repeat the basic principles and methods, and
elaborate on the parts that are specific for our case.

We approximate the flow in our system to be incompressible, inviscid and irro-
tational, so that we can describe the velocity field v as the gradient of a potential
φ

v = ∇φ (7.1)
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Figure 7.1: Jet formation in experiment (background images) and simulation (black
and white solid lines). Absorbed laser energy was 365 µJ, distance between laser
focus and meniscus was 600 µm, the tube radius is 250 µm. Pressure amplitude used
in the simulation was 1581 bar, pressure duration was 50 ns, and the initial bubble
radius was 25 µm.
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which satisfies the Laplace equation

∇
2
φ = 0. (7.2)

Using Green’s identity, the potential at any point inside the liquid domain can be
described by an integral over the boundary containing φ and φn, where φn is the
spatial derivative of φ in the direction normal to the boundary. The system can be
solved if at every point on the boundary either φ or φn is known. Solving the system
is greatly simplified by imposing axial symmetry, reducing the surface integrals to
line integrals. This simplification is justified by the axial symmetry observed in the
experiments. On stationary solid boundaries we have φn = 0, and on the free surface
we know the potential after time-integrating the unsteady Bernoulli equation

∂φ

∂ t
=−1

2
|∇φ |2− ∆p+κσ

ρ
−gz (7.3)

with ∆p = pg− pa the pressure of the ambient vapor minus the atmospheric pressure,
κ the curvature, σ the surface tension, ρ the liquid density, g the gravitational accel-
eration and z the vertical coordinate. Due to the size and the time scale of the exper-
iment, the gravitational component gz can be neglected. After solving the boundary
integral equation, φ and φn are known everywhere on the boundary, and the new po-
sition of the free surface can be achieved by time-integrating the kinematic boundary
condition

dr
dt

= ∇φ . (7.4)

Due to the absence of viscosity, some form of surface smoothing is necessary to
keep the simulation stable. We use the node-shifting technique described by [17],
according to which new nodes are placed half way between all existing nodes, after
which the original nodes are removed. This method effectively removes instabilities
that are related to the node spacing everywhere on the free surface, except at the node
on the symmetry axis because this node cannot be shifted or removed. We found that
in our situation this node was subject to these instabilities, and therefore we applied
an additional smoothing to it. This was done with the help of quadratic extrapolation
of the position and the potential, using the two nodes next to the axis of symmetry and
the symmetry condition. We verified that the numerical solutions were not sensitive
to the amount of smoothing that we applied.

Because we are investigating a liquid inside a capillary, we have to take into
account a moving contact line. The node that connects the liquid surface to the solid
boundary can be considered both as part of the free surface and of the capillary wall.
In solving the boundary integral equation, we treat this connecting node as a the
latter, and impose φn = 0 on it. Implementation of the actual moving contact line
with a dynamic contact angle as described by [18] would not be appropriate here
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θ

λ

Figure 7.2: The axisymmetric numerical setup. A tube of radius Rt is filled with
liquid. The liquid-air interface has the shape of a spherical cap, with a contact angle
θ . We position a bubble with a radius of 1/10 of the tube radius at a distance λ from
the meniscus. The dashed line in the center represents the axis of symmetry.

since this is based on a balance between surface tension and viscosity, while our
simulations are inviscid. Instead, we calculate the new position of the connecting
node by extrapolating the nodes next to the connecting node. This method is similar
to the one used by [13], where the node connecting to the solid was displaced so that
the contact angle remained at 90◦. The exact implementation turns out only to have
a non-negligible effect only close to the contact point and not to be important for the
development of the jet. Comparing the extrapolation method and fixed contact angles
between 60◦ and 120◦ resulted in less than 1% variation of the maximum jet velocity.

7.2.1 Initial condition

The computational domain that we use is closed at one side in the shape of a half-
sphere; the free surface is at the opposite side of the tube (see Fig. 7.2). Because the
diameter of the tube is much smaller than the capillary length, gravity can be safely
neglected, and the free surface adopts the shape of a spherical cap. The initial shape
of the free surface in the simulations can therefore be defined using only the static
contact angle θ . Note that the contact angle θ only serves as an initial condition, and
we do not impose a dynamic contact angle. A bubble with a radius 1/10 of the tube
radius is positioned at a distance λ from the free surface. The distance of the bubble
from the closed end of the tube does not have an influence on the simulations, as long
as it is a few tube radii or more.

7.2.2 Pressure wave model

In the experiment, a pressure wave is created by vaporizing a small amount of liquid
with a laser pulse. This abrupt vaporization is responsible for a very large increase in
the pressure in a small volume, which results in a pressure wave that travels through
the tube and reflects on the free surface [1]. As argued in that paper, the initial
velocity V0 of the free surface is connected to the pressure wave strength ∆p≈ 1

2 ρcV0,
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where c is the speed of sound in the liquid. E.g., for V0 ∼ 10 m/s and c = 1497 m/s
we find ∆p∼ 75 bar.

The reflections of the pressure wave on the free surface and the wall of the tube
ultimately result in a pressure gradient between the vapor bubble and the free surface,
so that the entire liquid volume in between will start to move. Starting from this very
early point in time, the dynamics of the system is expected to be well described by the
potential flow boundary integral model employed in this chapter. In the simulation,
we model this pressure wave by applying a pressure pulse on the bubble [19]. This
pressure pulse has a typical amplitude ∆p and a duration ∆t. Figure 7.3 shows that
if ∆t is small enough, the only relevant value is the product ∆p∆t (which is of the
order of 10 Pa ·s) and the pressure pulse can be assumed to be instantaneous. For
simplicity, we will keep ∆t at 50 ns, and vary only the pressure amplitude. With
this choice, the pressure amplitude easily reaches values of the order of 103 bar,
i.e., in excess of the critical pressure of water (≈ 220 bar). This does not need to
worry us too much, since not ∆p itself but the product ∆p∆t determines the course
of events. After the pressure pulse, the pressure inside the bubble is set to zero to
account for the rapid condensation of the vapor in the bubble as was also done by
[19]. A more sophisticated model where the heat exchange is taken into account
for the growth and collapse of a vapor bubble created by a laser pulse can be found
in [20]. In our case, applying a perfect gas law as well as incorporating heat transfer
only resulted in marginal differences in the jet. We therefore use a simpler model
here, which minimizes the number of unknown adjustable parameters. The good
agreement between the simulations and the experiments convinces us that our model
is accurate enough to describe the physics that create the jets observed in experiments.

7.3 Numerical results

We will show here the results from the numerical simulations, and compare them
with the experiments of Tagawa et al. [1]. In Fig. 7.1 we find eleven snapshots from
the experiment, overlaid with the corresponding BI results. At t = 0 the laser pulse is
absorbed which modeled in the simulation as a bubble pressurized to 1581 bar for a
time span of 50 ns. The initially concave interface starts to move instantly and goes
through an almost flat stage at t = 7 µs to the development of a jet (t = 14−56 µs).
The maximum jet speed is reached between the second and the third frame at t =
10 µs, when the jet just starts to form. The position of the tip of the jet is fully
reproduced, as well as the overall shape of the jet. The bubble in the experiment is
created near the wall of the capillary, resulting in a difference in shape, but its size
is reproduced by the simulations at least up to t = 35 µs, as can be appreciated by
considering volume conservation in the system. Because the full free surface of the
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Figure 7.3: The velocity of the tip of the jet as a function of time for different values
of ∆t. The product ∆t∆p is kept constant at 15.20 Pa ·s, showing that the velocity
of the jet only depends on this product when ∆t is small enough. The results for
∆t = 25 ns (circles, ∆p = 6080 bar) and ∆t = 50 ns (solid line, ∆p = 3040 bar)
overlap, whereas a significantly larger duration of the pressure pulse ∆t = 6.4 µs
(dashed line, ∆p = 23.75 bar) results in a different velocity and a different evolution
of the velocity.
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t = 0 µs

t = 20 µs

t = 40 µs

t = 60 µs

t = 80 µs

t = 100 µs

Figure 7.4: The evolution of the jet and the bubble from a boundary integral simu-
lation. Parameters: Rtube = 250 µm, ∆p = 2027 bar, ∆t = 50 ns, θ = 30 degrees,
λ = 1106 µm.

experimental jet is reproduced by the simulation up to t = 35 µs, we know that the
volume of the bubble in the simulation is also the same as in the experiment. After
this there is a slight difference in the collapse of the bubble, which results in a small
difference at the base of the jet where the free surface connects to the wall of the
capillary. This however has no significant effect on the part of the jet that is further
away from the contact point.

7.3.1 Jet and bubble shape

Figure 7.4 shows how the jet and the bubble develop in time. The maximum speed
of the jet is approximately 30 m/s, which is reached around 20 µs after the pressure
pulse. The jet has a diameter which is about 1/10 of the diameter of the tube; this
holds for all tube diameters that we tested. The bubble initially grows spherically but,
due to confinement and asymmetry, it later takes on an elongated shape and grows
more towards the free surface. The right side of the bubble is almost stationary, also
during the collapse where a thick jet is formed reminiscent of the collapse of a bubble
near a free surface or a solid boundary [21, 22].
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Figure 7.5: The velocity of the tip of the jet as a function of time for both the simula-
tion (solid line) and experiments (diamonds). After an almost instantaneous acceler-
ation to 13 m/s during the 50 ns pressure pulse, the tip is further accelerated by the
focusing geometry to about 25 m/s. Experimental conditions and numerical settings
are the same as in Fig. 7.1.

7.3.2 Jet velocity and velocity field

In this chapter we focus on the jet velocity which can directly be compared with the
experimental measurements. We define the jet velocity as the velocity component
parallel to the tube axis at the tip of the jet (in Fig. 7.4 to the left). Figure 7.5 shows
numerical results together with experimental results on how the jet velocity evolves in
time. There are two acceleration mechanisms: First, driven by the very short pressure
pulse, a speed of about 13 m/s is reached almost instantaneously. After this there is
no more driving, but the focusing of the flow accounts for a further acceleration of the
jet which reaches a maximum velocity of about 25 m/s. Deceleration is accounted
for by surface tension (see § 7.3.4) and the collapsing bubble.

Figure 7.6 shows the velocity field in the liquid during jet formation. In Fig. 7.6(a)
the interface has not moved significantly due to the small time interval, but it clearly
shows how the interface is responsible for the focusing of the flow. In Fig. 7.6(b)
we see that although the surface in the center is approximately flat, the velocity still
has a focusing profile. Indeed, at t = 7.5 µs the jet is still accelerating. Only after
about 15 µs (see Fig. 7.6(c)), there is no more focusing of the flow. Stretching of the
jet is visible in Fig. 7.6(d) and 7.6(e) where the velocity of the tip of the jet is larger
than the velocity at the base, with the consequence that the jet becomes thinner while
increasing in length [23].
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t = 50 ns

(a)

t = 7.5 µs

(b)

t = 15 µs

(c)

t = 22.5 µs

(d)

t = 50 µs

(e)

Figure 7.6: The velocity field during the formation of the jet. (a) is right after the
pressure pulse, the free surface still has a spherical cap shape. In (a), (b) and (c),
focusing of the flow can be seen. (d) and (e) clearly show the stretching of the jet:
The largest velocity is in the tip of the jet, and gradually decreases towards the base
of the jet.
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Figure 7.7: The influence of the contact angle on the jet velocity. Tube radius is
250 µm, and λ = 460 µm. The numerical results are obtained with ∆p = 1647 bar,
the absorbed laser energy in the experimental data was 458 µJ. The dashed line
represents the model (7.21), with α = 0.44, β = 1.33, and h0 = 0.26.

7.3.3 Contact angle

Now, how does the jet speed depend on the contact angle? As we explained in § 7.2.1
the meniscus initially has the shape of a spherical cap. The meniscus thus has a well-
defined radius of curvature, which depends on the contact angle θ . A contact angle of
90◦ results in a flat interface (no curvature), and a contact angle of 0◦ gives a radius of
curvature equal to the inner radius of the capillary. A smaller contact angle increases
the curvature of the free surface, and therefore increases the focusing of the flow.

In the experiments, θ can be measured directly from images of the static menis-
cus, so we can directly compare the influence of the contact angle in experiments and
simulations. Figure 7.7 shows that the jet velocity is approximately linearly depen-
dent on cosθ . The deviation from the linear fit suggests that the dependence on the
contact angle is a bit stronger than linear, both in the experimental and the compu-
tation. A correction to the linear dependence and a more precise explanation for the
dependence on θ can be found in § 7.4. The absorbed laser energy in the experiments
in Fig. 7.7 was 458 µJ, the applied pressure in the simulations was 1674 bar.

7.3.4 Surface tension

In order to study the effect of surface tension in isolation, we turn off the collapse
mechanism of the bubble by setting the pressure in it to atmospheric after the initial
pressure pulse. In this case the bubble keeps growing until it would be ultimately
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Figure 7.8: Jet speed versus time for different surface tensions. The black solid
line has the surface tension of water (σ = 72.8 mN/m), the other values for the
surface tension are σ = 35 mN/m (dash-dotted line), σ = 150 mN/m (dashed line)
and σ = 300 mN/m (dotted line). The collapse of the bubble was turned off in
these simulations to isolate the effect of surface tension. Tube radius is 250 µm,
λ = 1106 µm, and ∆p = 2027 bar. For reference, the evolution of the jet velocity
with bubble collapse is represented by the gray solid line, with the same parameters
and σ = 72.8 mN/m.

restrained by surface tension over a much longer time scale than we consider.
Figure 7.8 shows the development of the jet velocity for four different values

of the surface tension. Clearly, the acceleration phase is dominated by inertia, as
there is almost no difference in the acceleration while there is an order of magnitude
difference in the surface tension. Only when the jet reaches its maximum velocity
and during deceleration surface tension starts to play a role. This stands to reason,
because the only decelerating mechanism in this case is surface tension, counteracting
the increase of surface area caused by the jet.

7.3.5 Pressure impulse

The magnitude of the pressure impulse ∆p∆t is the only parameter that cannot be
directly related to the experiment. We expect that the absorbed laser energy is the
experimental parameter that is most directly related to it. In the experiments, a linear
relation between the energy and the velocity of the jet is found. As can be seen in
Fig. 7.9, in the numerical simulation the jet velocity also depends linearly on the
pressure pulse. From these observations we conclude that there is a linear relation
between the absorbed laser energy (E in Joules) as measured in the experiments and
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Figure 7.9: The influence of the pressure on the jet velocity, compared to experiments
for two different tube radii. (a): Tube radius 250 µm, ∆t = 50 ns, θ = 30 degrees and
λ = 600 µm. (b): Tube radius 25 µm, ∆t = 5 ns, θ = 30 degrees and λ = 400 µm.
Experimental data were converted from the absorbed laser energy to pressure impulse
by a fitting routine; the energy is indicated at the top axis.

the pressure impulse that we apply in the simulations of Fig. 7.9:

∆p∆t ≈ 3.30 ·104 sm−3 E−5.0 Pa ·s (7.5)

for Rtube = 250 µm, and

∆p∆t ≈ 4.39 ·105 sm−3 E−8.5 Pa ·s (7.6)

for Rtube = 25 µm. The prefactor is one order of magnitude larger when the tube
radius is one order smaller, while the threshold value is of the same order. More
about the influence of the tube radius can be found in § 7.3.6.

In both the simulation and the experiment, there is an apparent threshold value
for the energy or pressure below which we cannot observe a well-defined jet. In the
experiments, the main reason for this would be that a large amount of the laser energy
is lost in heating up the fluid before a bubble can be created, as was shown by [20].
In the simulations the only cause for the threshold lies in the surface tension that
prevents the formation of a jet, and the vacuum inside the bubble after the pressure
pulse is applied. Once the kinetic energy is much larger than the surface energy
related to the formation of the jet and the potential energy related to the size of the
vacuum bubble, a jet can be formed. The zero value of E extrapolated on the upper
horizontal scale in Fig. 7.9 lies considerably to the left of the zero value of the lower
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impulse scale, which implies that the experimental threshold, due to thermal and
other losses, is significantly higher than the numerical one.

7.3.6 Tube radius

In the experiments, there is a clear dependence of the jet velocity on the tube radius:
smaller tubes create faster jets with the same absorbed laser energy, approximately
following the relation Vjet ∝ 1/Rt . One naively would argue that a smaller tube will
provide a stronger curved free surface, and therefore the stronger focusing will result
in a faster jet. Figure 7.10 shows that the maximum jet speed that is obtained in
the simulations only shows a very weak dependence on the tube radius. However,
a different effect caused by the tube radius is very clear: The acceleration is much
larger for smaller tubes, so that the maximum velocity is reached earlier. Indeed, a
smaller tube provides a higher curvature of the free surface, so the acceleration due
to flow focusing is larger. The maximum velocity, however, is a combination of the
magnitude and the duration of the acceleration, which both depend on the tube radius.
The simulations show that these two parameters cancel each other if we only change
the tube radius: larger tubes have less acceleration due to focusing of the flow, but
the acceleration persists for a longer time, as can be seen clearly in Fig. 7.10.

The remaining question is why there is such a strong dependence on the tube
radius in the experiments. The most plausible explanation is that for a fixed absorbed
energy, the generated pressure has a strong dependence on the tube radius. The reason
for this could be found in the volume Ve that is exposed to the laser energy E. Based
on dimensional analysis the produced pressure can be expected to scale as

∆p ∝
E
Ve

(7.7)

A smaller tube would result in a smaller volume that is exposed to the laser energy.
This then would account for the dependence of the jet velocity on the tube radius that
was observed in the experiments.

7.3.7 Bubble distance from the free surface

In experiments, the most direct measurable parameter is the distance between the
meniscus and the bubble. This makes it an excellent candidate to compare with nu-
merical simulations. We define the distance λ as the distance between the center
of the bubble and the point on the meniscus that is on the axis of symmetry (see
Fig. 7.2). Due to the axisymmetry of the numerical simulations, the bubble is always
in the center of the tube. In experiments however, the bubble is usually created near
the wall of the tube, due to the characteristics of the absorption of the laser light in
the liquid. The difference between these different bubble positions can be neglected



7.4. THEORETICAL APPROXIMATION 129

0 2 4 6
0

10

20

30

40

t (µs)

V
je

t (
m

/s
)

Figure 7.10: The influence of the tube radius on the jet velocity. A smaller radius
increases the acceleration due to flow focusing, but decreases the duration of the
acceleration, resulting in approximately the same maximum jet velocity. Tube radii in
this figure are 25 µm (solid line), 50 µm (dashed line) and 100 µm (dotted line). The
other parameters are the same for all three simulations: ∆p = 3040 bar, ∆t = 50 ns,
θ = 30 degrees and λ = 1250 µm.

when the distance between the bubble and the meniscus is large compared to the
radius of the tube (λ/Rt � 1).

Figure 7.11 shows the jet velocity as a function of λ , together with the experimen-
tal measurements. There is a good agreement between experiments and simulations,
and both show a clear 1/λ dependence for the jet velocity. Both the numerical and
the experimental results are obtained with a tube radius of 250 µm and a contact an-
gle of 25 degrees. The absorbed laser energy in the experiments was 305 µJ and the
pressure amplitude for the simulations, calculated using (7.5), was 1013 bars.

7.4 Theoretical approximation

We will now try to understand the mechanism of the jet formation and the achieved
velocities analytically by approaching the problem with a simplified model. The
route through which the jet attains its maximum velocity can be split in two parts:
the pressure impulse and the flow focusing. The effect of the former is determined
by how the pressure wave in the (incompressible) simulations, which gives an initial
velocity to the liquid, is modeled. After the liquid is set into motion, the curved shape
of the meniscus leads to a further acceleration of the liquid by focusing it in a fast thin
jet. We first neglect the influence of the curvature of the free surface on the action of
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Figure 7.11: The influence of the distance between the bubble and the meniscus on
the jet velocity. Tube radius is 250 µm and θ = 25◦. The numerical results are
obtained with ∆p = 1013 bar, directly related with (7.5) to the absorbed laser energy
in the experimental data, which was 305 µJ. A power-law fit (solid line) reveals a
clear 1/λ dependence of the jet velocity.

the pressure pulse; we revisit this aspect later.

7.4.1 The pressure pulse

We approximate the system during the pressure pulse as one-dimensional, so after
neglecting viscosity and compressibility we can write the Euler equation as

∂u
∂ t

=− 1
ρ

∂ p
∂ z

, (7.8)

where u is the axial velocity of the liquid, and t the time. Note that due to continuity
in this one-dimensional system, the ∂u/∂ z term in the material derivative equals 0,
so on the left hand side we only have ∂u/∂ t. The axial pressure gradient ∂ p/∂ z is
given by the pressure in the bubble ∆p and the distance λ between the bubble and the
free surface:

∂ p
∂ z

=
∆p
λ

. (7.9)

The Laplace pressure jump on the free surface can be neglected because ∆p is very
large compared to the typical pressure associated with surface tension.

We integrate (7.8) over the duration ∆t of the pressure pulse and obtain the ve-
locity V0 of the free surface after the pressure pulse [19]:

V0 =
∆p∆t
ρλ

, (7.10)
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where we assume λ to be constant, which can be done if ∆t is small enough.

7.4.2 The flow focusing

After the pressure pulse there is no more driving of the flow, which means that all
further acceleration is caused by focusing. We will now give an analysis for the ac-
celeration due to flow focusing based on continuity. Starting with a spherical surface
with radius of curvature Rc and velocity V0 directed normal it, we keep the flow rate
constant:

V0R2
c = (V0 +dV )(Rc−dR)2, (7.11)

where dV is a small increase in velocity due to a small decrease in radius dR. At
leading order, dR =V0dt, and (7.11) becomes:

dV
dt

=
2V 2

0
Rc

(7.12)

The radius of curvature can be expressed using the tube radius Rt and the contact
angle θ as Rc = Rt/cosθ , which then gives us the following expression for the ac-
celeration:

a = 2V 2
0

cosθ

Rt
. (7.13)

Clearly, smaller tubes have stronger focusing and therefore generate a larger ac-
celeration. This, however, does not mean that the maximum velocity of the jet will be
higher as well. To determine the increase in speed due to the flow focusing we have
to find a time scale during which the fluid is accelerated. The focusing time scale ∆t f

is provided by the typical velocity V0 (the velocity created by the pressure pulse) and
the typical length scale Rt (the radius of the tube):

∆t f =
Rt

V0
. (7.14)

The increase in velocity due to flow focusing is then

∆V ∼ a∆t f = 2V0 cosθ , (7.15)

where it becomes clear that the increase in velocity due to flow focusing is indepen-
dent of the tube radius.

7.4.3 The maximum jet velocity

The maximum velocity reached by the jet is the sum of the velocity reached after the
pressure pulse and the increase in velocity due to flow focusing

Vmax =V0 +∆V =
∆p∆t
ρλ

(1+β cosθ), (7.16)



132 CHAPTER 7. HIGHLY FOCUSED SUPERSONIC MICROJETS

with β a proportionality factor which we expect to be of order unity. First of all, the
proportionality to ∆p∆t

ρλ
is in excellent agreement with the results from the simulations

shown in Figs. 7.9, 7.11 and with the fact that Vmax does not depend on the tube radius
(see Fig. 7.10). To compare the dependence on the curvature of the meniscus, we now
turn to Fig. 7.13(a). Here we compare the model with β = 2.0 to the simulation data.
The velocities are roughly reproduced, but it is clear that there is a dependence on the
curvature for V0, which is not accounted for by the model and the increase of Vmax

is therefore not very accurately reproduced. Clearly, neglecting the curvature of the
surface during the pressure pulse has been too bold an assumption.

7.4.4 Correction for a pressure pulse on a curved interface

We will now apply a correction to the above derived model to account for the curved
interface during the pressure pulse. The above derivation (7.10) gives the velocity
in the bulk, far away from the the bubble and the free surface. We will use volume
conservation and an approximate velocity distribution on the free surface to calculate
the free surface velocity on the tube axis.

The first step will be to determine the velocity distribution on the free surface.
Due to the short time scale and the magnitude of the pressure pulse, we can neglect
the tangential velocity components. We therefore only take into account the velocity
normal to the interface, and we can consider the free surface as an equipotential
surface. Away from the free surface we expect the one-dimensional approximation
to hold, resulting in a uniform axial velocity, so that we will have evenly spaced
equipotential surfaces oriented perpendicular to the tube wall.

The free surface is a curved equipotential surface that needs to matched to the
plane equipotential surfaces in the bulk. With reference to Fig. 7.12 we introduce a
distance H0, ultimately to be treated as a fitting parameter, as the smallest distance
from the free surface where we assume the equipotential surfaces to be unaffected by
the curved interface. We now calculate the distance between the free surface and the
horizontal plane defined by H0 in the direction normal to the free surface. We will
call this the ζ -dependent effective distance He:

He(ζ ) =
Rc +H0

cosζ
−Rc (7.17)

where we have defined the position on the free surface as a function of the radius of
curvature Rc and the angle ζ , as shown in Fig. 7.12. Because the potential differ-
ence between the plane defined by H0 and the free surface is constant, we expect the
velocity to be inversely proportional to the effective distance He:

Vf s(ζ ) =
A

He(ζ )
(7.18)
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liquid

air

Figure 7.12: Definition of the distance H0, the effective distance He, radius of curva-
ture Rc and angle ζ .

with A a constant that we will determine using volume conservation: The flux through
a cross-section in the bulk, where the velocity is uniform, must equal the flux through
the free surface:

VBπR2
t =

∫ 2π

0

∫
π/2−θ

0
Vf s(ζ )R2

c sinζ dζ dξ , (7.19)

where VB = α
∆p∆t
ρλ

, Rc = Rt/cosθ , and Rt the tube radius. α is a prefactor which
should be of order unity, reflecting the one-dimensional character of the flow in the
bulk. We expect α to become closer to 1 when λ/Rt increases.

We now have an expression for A, which we substitute in (7.18), and we arrive at
the following velocity on the free surface V0 ≡Vf s(ζ = 0, t = ∆t):

V0 = α
∆p∆t
ρλ

1
2h0

cosθ

b log
( sinθ−b

1−b

)
+ sinθ −1

(7.20)

with b = 1+ h0 cosθ , and the geometrical factor h0 = H0/Rt . The value of h0 only
needs to be determined once by fitting, since we do not expect it to change with other
parameters.

The maximum velocity remains

Vmax =V0(1+β cosθ), (7.21)

with V0 given by (7.20).
In Fig. 7.13(b) we compare the corrected model to the boundary integral simu-

lations, with α = 0.94, β = 0.88, and h0 = 0.26. We find an excellent agreement
between the simulations and the model given by (7.20) and (7.21). Figure 7.7 shows
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the comparison of the model with both experiments and simulations, for a different
tube radius and bubble distance, but we have used the same value for h0. Note that in
the comparison shown in Fig. 7.7, α is smaller, which is due to the fact that in that
case λ ∼ Rt .

7.5 Conclusions and discussion

We have numerically investigated the formation of microjets in a capillary by laser in-
duced cavitation using axisymmetric boundary integral simulations. Although com-
pressibility plays an important role in the formation and initial growth of the bubble
as well as in the subsequent pressure wave that travels through the liquid, we have as-
sumed incompressibility for our numerical simulations. This is possible because the
compressibility is only important during the very short period of the pressure wave
reflecting from the free surface, which we have modeled by applying a short strong
pressure pulse on the bubble inside the capillary. After the initial pressure impulse,
the formation of the jet can be considered as incompressible, because the observed
speeds are mostly much smaller than the speed of sound in water, and pressures are
moderate.

We have found a convincing agreement in shape and evolution of the jet between
the simulations and the experiments, which has allowed us to perform a detailed
study of the involved parameters, including those which are difficult to access in
experiments.

We compared the influence of the different parameters on the maximum achieved
velocity of the jet. We have found good agreement between the simulations and the
experiments by investigating the influence of the distance λ and contact angle θ . It is
however much harder to directly relate the absorbed laser energy in the experiment to
the pressure pulse in the simulation. By comparison we were able to derive that the
pressure pulse ∆p∆t is linearly related to the absorbed energy E, and we have given
arguments for the dependence of the pressure on the capillary radius Rt .

The jet velocities we find in the simulations can be reproduced accurately by a
simple model. We developed this model starting with a one-dimensional approxima-
tion for the pressure pulse and dimensional analysis for the focusing effect during jet
formation. We improved the one-dimensional approximation by making a correction
for the curved interface during the short pressure pulse, where deformation of the
meniscus can be neglected.
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Figure 7.13: The velocity V0 of the jet just after the pressure pulse and the maximum
velocity Vmax of the jet. Parameters: Rtube = 100 µm, ∆p = 3040 bar, ∆t = 50 ns, λ =
1250 µm. The diamonds and circles are results from boundary-integral simulations.
In (a) the solid line corresponds to (7.10) and the dashed line corresponds to (7.16),
with β = 2. In (b) the solid line corresponds to (7.20) and the dashed line corresponds
to (7.21), with α = 0.94, β = 0.84, and h0 = 0.26.
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8
Coexistence of Two Singularities in

Dewetting Flows: Regularizing the Corner
Tip ∗

Entrainment in wetting and dewetting flows often occurs through the formation of
a corner with a very sharp tip. This corner singularity comes on top of the diver-
gence of viscous stress near the contact line, which is only regularized at molecular
scales. We investigate the fine structure of corners appearing at the rear of slid-
ing drops. Experiments reveal a sudden decrease of tip radius, down to 20 microns,
before entrainment occurs. We propose a lubrication model for this phenomenon,
which compares well to experiments. Despite the disparity of length scales, it turns
out that the tip size is set by the classical viscous singularity, for which we deduce a
nanometric length from our macroscopic measurements.

8.1 Introduction

Fluid interfaces can be deformed into singular structures exhibiting length scales
much smaller than that of the global flow. The most common example is a water
drop detaching from a faucet, developing a singularity at pinch-off [1, 2]. Similar
topological changes occur when the flow near the interface is driven so strongly that

∗Published as: Ivo Peters, Jacco H. Snoeijer, Adrian Daerr, and Laurent Limat, Coexistence of Two
Singularities in Dewetting Flows: Regularizing the Corner Tip, Phys. Rev. Letters. 103, 114501 (2009)
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one of the fluid phases can invade the other. This so-called entrainment often occurs
through a sharp cusp or tip [3–7], as is e.g. observed for air bubbles entrained by a
jet or solid plunging into a liquid pool [8–12]. However, below the critical driving
strength the interface remains at steady state and a stationary, singular structure is
formed. Besides fundamental interest, this control over small length scales is crucial
in applications such as spray formation and inkjet printing [13, 14], while entrain-
ment is rate limiting in coating [15].

A peculiar situation arises in wetting flows, when the liquid is bounded by a
corner-shaped contact line [8–10, 16–18], cf. Fig. 8.1(b). Above a critical speed
the sharp corner tip breaks up to entrain bubbles or droplets depending on whether
the contact line is advancing or receding. This corner singularity emerges on top
of the famous moving contact line singularity: even a perfectly straight contact line
develops diverging viscous stress when maintaining a no-slip boundary condition
down to molecular scale [19, 20]. Despite progress on the flow away from the tip [21,
22], it has remained unclear how these two singularities can coexist, whether they are
related and what determines the sharpness of the corner tip [17].

In this chapter we investigate the fine structure of corner tips appearing at the
rear of drops sliding down an inclined plane (Fig. 8.1). The steady-state corners are
characterized by the tip radius R, which close to the entrainment threshold is found
to decrease dramatically with drop speed U . Using a lubrication model we derive the
approximate relation

R = `eθ 3
e /9Ca, (8.1)

that accurately describes the experimental observations. Here θe is the equilibrium
(receding) contact angle and the speed dependence appears through the capillary
number Ca = Uη/γ , where η and γ denote viscosity and surface tension. We iden-
tify the length ` as the molecular scale associated with the microscopic physics of
wetting [23–31]. We obtain a length of the order of 10 nm by fitting the experimen-
tal data. From a hydrodynamic point of view, this is the scale at which the classical
viscous singularity is regularized.

Dewetting corners thus have the remarkable feature that the tip size is governed
by an inner length scale `, much smaller than the tip radius itself. This scenario is
very different from free surface singularities without a contact line, even though these
can exhibit a similar exponentially decreasing tip size. For example, the cusp solution
by Jeong & Moffat [3] scales as Rcusp ∼ Le−Ca, but in this case L is an outer length
scale characterizing the macroscopic flow.
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(a) (b)

(c) (d)y

x
R

Figure 8.1: (a) Sketch of the experimental setup. Partially wetting silicone oil drops
slide down an inclined plane with constant velocity. (b) The interface shape of the
drop is monitored from above for different sliding velocities. At large speeds a sharp
corner forms at the rear of the drop. (c) The tip radius R can be determined from
a zoom of the corner tip. (d) Same as in (c) showing that the contact line is well
approximated by a hyperbolic shape (dashed, using R = 50 µm).
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Ca

Ca

Figure 8.2: Experimental measurements of the tip curvature 1/R as a function of Ca.
Data are normalized by the contact line radius at zero speed, R0 = 1.63 mm. At low
Cathe curvature stays nearly constant R/R0 ≈ 1, while close to the pearling transition
(vertical dashed line) the curvature increases nearly two orders of magnitude. Solid
line indicates the prediction (8.1) with `= 7 nm. Inset: The logarithmic plot confirms
the predicted scaling. Dashed line is the best linear fit.

8.2 Experiments

A schematic view of the experimental setup is given in Fig. 8.1(a). Silicon oil
drops are deposited on an inclined glass plate (η = 18.6 cP, γ = 0.0205 N/m, ρ =
940 kg/m3). The drops detach from a pipette connected to a syringe pump, resulting
in a constant drop volume (typically 8−10 mm3). The drops slide down at a constant
speed U that is controlled by the angle at which the plate is inclined. The glass plate
is coated with fluoro-polymers (FC725), providing partial wetting conditions for sili-
con oil [16] with static advancing and receding angles of 55◦ and 45◦ respectively. As
we consider the receding contact line at the rear of the drop we take θe = 45◦. The
corners are visualized with large magnification that is achieved by using a 25 mm
Pentax lens in reversed direction combined with several macro extension tubes. The
optical resolution of the images like Fig. 8.1(c) on which the actual tip curvature
measurements are done is 2 µm/pixel on a 1 megapixel image.

Figure 8.2 shows experimental results on the contact line curvature 1/R as a
function of drop speed Ca. Tip radii are normalized by the radius of curvature of
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Ca

h0

x = 50 µm

x = 00.5 mm

Figure 8.3: The receding contact angle θ measured at a fixed distance x = 50 µm. A
linear fit is made to the Cox-Voinov regime (solid line). A clear departure from the
linear regime sets in at Ca≈ 6 ·10−3, where R approaches the measurement scale of
50 µm. Inset: A side view of the rear of a drop sliding from right to left. h0 is the
height of the drop along the centerline.
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a static drop of the same volume, R0 = 1.63 mm. At low speeds the curvature re-
mains constant, while a rapid increase of the curvature can be seen at capillary num-
bers Ca & 5 ·10−3. This behavior coincides with the onset of the cornered shape.
The measurements continue up to the “pearling transition” at which small droplets
are entrained, occurring around Ca = 7 ·10−3. The smallest tip size we find before
this entrainment is approximately 20 µm, which is nearly two orders of magnitude
smaller than the global drop size. The scaling (8.1) is revealed in the inset of Fig. 8.2,
showing the curvature 1/R on a semi-logarithmic scale versus 1/Ca. In the corner
regime the data agree very well with this exponential behavior. The solid line was
fitted using the length scale ` as the sole adjustable parameter, yielding ` = 7 nm.
We wish to emphasize, however, that the determination of ` is very sensitive to the
details of the fit. For example, when fitting (8.1) using θe as second adjustable pa-
rameter one finds θe = 41◦ and ` = 65 nm (dashed line). We nevertheless conclude
that the length scale is of nanometric size, consistent with the typical size of silicone
oil molecules [17].

We now wish to demonstrate that ` is related to the regularization of the viscous
singularity that appears in the Cox-Voinov law for the dynamic contact angle θ [23]

θ
3 = θ

3
e −9Ca ln

x
`θ

, (8.2)

which is accurate within 2% for angles up to 45◦ [24]. This dynamic angle varies
logarithmically with the distance to the contact line x, cut-off at a scale `θ . The
precise interpretation of this length depends on the physics at molecular scale, which
goes beyond hydrodynamics and beyond the purpose of the present paper [23–31].
Here we estimate `θ by measuring the contact angle along the central axis of the drop,
very near the tip, from side view images at different speeds (cf. inset of Fig. 8.3).
Strictly speaking, (8.2) is derived for straight contact lines. We therefore perform our
measurements at a distance� R, where the effect of contact line curvature should be
negligible. Given the resolution of the side view images, we take x = 50 µm in order
to have sufficient accuracy on the contact angle.

Figure 8.3 shows θ 3 versus Ca. We clearly distinguish the linear regime of (8.2),
as well as a departure from this behavior at higher drop speeds. From a linear fit
we recover the (receding) equilibrium angle θe = 45± 1◦ as well as `θ = 8± 5 nm.
This length scale is consistent with the order of magnitude found from the R mea-
surements. The deviation from the Cox-Voinov behavior occurs when the radius of
curvature approaches the measurement scale of 50 µm, around Ca ≈ 6 ·10−3. This
once more suggests an interaction between R and `θ in the corner regime.
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8.3 Lubrication model

We interpret these findings within a lubrication model that incorporates the strongly
curved tip. For small contact angles the shape of the liquid-gas interface, h(x,y),
obeys a partial differential equation that expresses a balance between capillary and
viscous forces [32]. The multi-scale nature of the problem makes it difficult to solve
the equation by direct simulation. Instead, we propose an approximate analysis that
has the additional advantage of yielding expressions in closed form. First, we as-
sume that the flow is oriented purely in the x direction (Fig. 8.4, inset), so that the
lubrication equation simplifies

∂xκ =
3Ca
h2 . (8.3)

κ is the interface curvature providing the Laplace pressure p =−γκ . For sharp cor-
ners with vanishing tip size, this “planar flow approximation” was found very accu-
rate [21]. In the present case this corresponds to x� R. For x� R the flow becomes
truly one-dimensional since ∂/∂y � ∂/∂x and (8.3) is even exact. In this region
κ = ∂xxh, and (8.3) can be integrated to the Cox-Voinov law [23, 24, 33]. For corners
such as in Fig. 8.1 we thus expect to recover (8.2) at small distance from the tip.

Away from the tip, x∼ R, the interface exhibits a truly two-dimensional structure,
κ = ∂xxh + ∂yyh, making the analysis much more involved. This effect has been
considered in the limit of weak contact line curvature [34], but this is not sufficient
for the present purpose. To make progress we estimate κ by (i) approximating the
contact line shape by a hyperbola, y2

cl = 2Rx+φ 2x2, and (ii) approximating the cross-
section of the corner by a parabola. The quality of the former approximation can be
inferred from the dashed line of Fig. 8.1(d), while the latter has been justified in detail
in [21]. With this, the interface is parameterized as (cf. inset Fig. 8.4)

h(x,y) = h0(x)
(

1− y2

y2
cl

)
, (8.4)

containing R and φ , the opening angle of the hyperbola, as parameters. In addition,
we still need to solve the centerline profile h0(x). To close the problem we evaluate
the curvature at the centerline y = 0,

κ = h′′0−
2h0

2Rx+φ 2x2 , (8.5)

which together with (8.3) provides an ordinary differential equation for h0(x). This
equation was previously studied with vanishing tip radius R = 0 [21, 22], here rep-
resenting the limit x� R. This regime admits solutions with a well-defined corner
angle h′0(∞) = Ω = (3Caφ 2/2)1/3, obtained by combining (8.3) and (8.5).
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Figure 8.4: Rescaled slope H ′3 obtained from numerical solution of (8.6) with bound-
ary conditions H ′(∞) = 1, H(0) = 0 (solid lines). The Cox-Voinov logarithmic vari-
ation saturates at a distance X ∼ 1, corresponding to the tip radius. Dotted lines
represent (8.7) using β as fit parameter. Inset: the drop shape is modeled by a hy-
perbolic contact line shape ycl(x) and parabolic cross section. The centerline profile
h0(x) can then be computed from (8.6).
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It is convenient to introduce dimensionless variables X = xφ 2/R and H = h0φ 2/RΩ,
so that from (8.3) and (8.5) we obtain the equation on the centerline

φ 2

2
H ′′′−

(
H

X(X +2)

)′
=

1
H2 . (8.6)

The only remaining parameter is the opening angle φ †. We have the asymptotic
boundary conditions H ′(∞)→ 1 (corner solution) and H(0)→ 0 towards the contact
line. Figure 8.4 displays the solutions obtained from numerical integration, for var-
ious φ . At small X one recovers the Cox-Voinov logarithmic variation of the slope
H ′, showing up as a straight line on this plot. However, this trend saturates at large X ,
when the two-dimensional nature of the curvature becomes apparent. All solutions
are very accurately represented by the form

H ′3 = 1+
6

φ 2 ln
(

1+
β

X

)
, (8.7)

as can be seen from Fig. 8.4 (dotted lines). We used β as a fit parameter that turns
out to depend weakly on φ . A perturbation expansion shows that (8.7) is in fact the
exact solution for φ � 1, with β = 2.

To solve for the tip radius, the final step is to match (8.2) to the small scale
asymptote of (8.7), which in original variables reads h′3 'Ω3 +9Ca ln βR

xφ 2 . Equating
the two expressions one finds

Ω
3 = θ

3
e −9Ca ln

βR
φ 2`θ

, (8.8)

which is the sought for relation between R, Caand the contact angles. Since in prac-
tice Ω� θe, it can be recast as (8.1) with ` = `θ φ 2/β . Strictly speaking this length
contains a dependence on drop speed through the opening angle φ that also induces a
variation of β . This variation, however, is subdominant with respect to the exponen-
tial dependence in (8.1).

Let us emphasize that the structure (8.7) is robust with respect to the choice of
parametrization of the interface shape and the “planar flow approximation”, since
these only affect the cross-over to the corner regime. On the other hand, the numerical
value of β is determined from the second term in (8.5) and will certainly be model
dependent. One should bear in mind that these details fall within the experimental
uncertainty on ` and `θ .

†Experimentally, the angle φ decreases with drop speed, in order to reduce the normal velocity of
the inclined contact lines [16, 17]; its value remains of order unity.
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8.4 Conclusions and outlook

We have identified a new kind of singularity in free surface flows for which the regu-
larization involves a microscopic (inner) scale instead of a macroscopic (outer) scale.
In fact, the corner is obtained by sharply bending the line singularity associated to
the viscous divergence near the contact line. This is very specific for wetting flows
and differs qualitatively from other free surface singularities. Our findings also em-
phasize that the dynamic contact angle is strongly affected by the corner. This gives
a departure of the Cox-Voinov behavior when the tip size becomes comparable to the
scale of measurement. It would be interesting to compare these results to advancing
contact lines, where bubble entrainment occurs through sharp corners as well [8–10].

In the experiment, the minimum tip size that can be achieved is limited by the
onset of the pearling instability. This instability can possibly be incorporated in the
model by matching the cross sections to the inclined contact lines, along the lines
of Ref. [22]. In that study, however, the tip radius was neglected and incorrectly
predicted a vanishing size of emitted drops at threshold. In practice these drops are
of the order of 100 µm, which we speculate to be related to the finite radius of the
tip.
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9
Conclusions and Outlook

In this thesis a wide variety of free surface flow focusing experiments have been
investigated. The free surface has acted either as a boundary to focus a gas flow, has
been the subject of flow focusing due to its shape, or a combination of both. For
each chapter, we summarize here the main conclusions, followed by suggestions for
further research.

In Chapter 2 and Chapter 3 we have investigated the air flow inside a collapsing
cavity created by disc impact on a water surface. We have used two different experi-
mental methods to determine the air flow. We combined the advantages of both which
together with numerical simulation provided valuable information. The first experi-
mental method that we employed was measuring the volume of the cavity. The main
advantage of this method is that the cavity volume is experimentally easy accessible,
and that it can be applied during the full experiment from the moment of impact until
the collapse. The disadvantage is that we can only indirectly measure the air flow,
which means that we have to assume a simple one-dimensional flow structure, and
we can only calculate the air velocity if compressibility can be neglected. Our sec-
ond experimental method relies on flow visualization by laser-sheet illumination of
smoke particles inside the cavity, from which we were able to directly measure the
velocity of the air. Although the latter method is not reliable close to the pinch-off, it
does show that for moderate velocities of the air, the indirect volume method can be
used. For higher velocities we used numerical simulations in three settings: (i) a sin-
gle incompressible phase, (ii) two-phase with incompressible gas, and (iii) two-phase
with compressible gas. By comparing these three different simulations with the ex-
perimental results, we showed that to fully describe the dynamic shape of the cavity
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compressibility of the air needs to be taken into account. A striking consequence of
the compressibility is that the air obtains supersonic speeds and a shock in the neck
region develops just before the pinch-off.

We have shown that the air plays an important role in the collapse of a cavity
close to the moment of pinch-off by comparing experiments with simulations. It
would however also be possible to show the influence of air by experiments only. For
this, experiments could be done under reduced or increased air pressure, or using a
heavier gas (for example SF6). This should have a pronounced effect on the evolution
of the cavity volume when the moment of pinch-off is approached.

With regard to the jet formation right after the pinch-off, it would be very inter-
esting to find out if the jet is influenced by the air flow. Especially the initial part of
the jet can be rather irregular and behaves more like a spray of small droplets than
like a coherent jet, which might be due to large air velocities. This effect would also
be more visible at higher air pressures or using a heavier gas.

In Chapter 4 we have performed an experimental study of the collapse of non-
axisymmetric cavities. We have provided convincing experimental evidence for the
oscillations at a wide range of mode numbers that were predicted by the theory of
Schmidt et al. [1]. In the linear regime there is excellent agreement between the
experiments and the theory. We have pushed the non-axisymmetric perturbations
far beyond the linear regime by increasing the amplitude, which resulted in a wide
variety of complex shapes.

The non-linear phenomena in non-axisymmetric collapses have very recently
been studied numerically by Lai [2] with a two-dimensional potential flow numer-
ical scheme, which for some cases resulted in shapes very similar to the ones that we
have found. Direct comparison to these simulations will provide better understanding
of the mechanisms behind the complex observed behavior, and maybe tell whether
a three-dimensional non-axisymmetric numerical simulation is needed to reproduce
the shapes that we observed.

A regime that has not been covered experimentally is the collapse of cavities
that have perturbations of multiple superimposed modes. This could also involve
perturbations that are not rotationally symmetric.

In Chapter 5 we have used experiments, numerical simulations and theoretical
analysis to better understand the formation of splashes and droplet ejection after disc
impact. We have derived the existence of self-similar solutions for the shape of the
splash for any value of the Weber number, which we confirmed with simulations
and experiments. To elucidate the transition to droplet ejection from the splash, we
determined the local Bond number at the tip of the splash to be of order unity at the
transition. We showed that this condition for the transition to droplet ejection, related
to the local Bond number, leads to a critical Weber number which we determined
experimentally.
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It remains unclear what sets the size of the ejected droplets. Possible explanations
could be found in the initial size of the rim that develops around the disc. This
initial (or minimum) size could be determined by the lubricating air layer between
the disc and the water surface (this situation could be implemented in the boundary-
integral simulations), the viscous boundary layer in the liquid close to the disc, or a
combination of both.

A very fruitful combination would be to use discs with a very small amplitude
perturbation (comparable to those used in Chapter 4) to see if there is a preferred
mode number that decreases the critical Weber number the most. Finding a preferred
mode number for the ejection of droplets may clarify the relation between the very
regular pattern of droplets found after the drop impact on a shallow layer of liquid [3],
and the more irregular droplet ejection after the impact of a circular disc. For this,
one would need to find out what the best method is to make a fair comparison be-
tween different mode numbers. This could possibly be done by using the maximum
curvature on the disc as a measure for the perturbation instead of the amplitude of the
harmonic perturbation.

By impacting a disc on an oil layer floating on a water surface in Chapter 6, we
have found experimental evidence for the jet model proposed by Gekle et al. [4].
We found that the jet is formed only from liquid on the surface of the collapsing
cavity, and that there is no persisting stagnation point flow after the collapse. By
starting the disc from an oil/water interface of two deep liquid layers, we found that
universal profiles can be observed for large Froude numbers. We were able to show
that deviations of the universal profiles depend on the effective Froude number Fr∗.

For the impact on a thin layer of oil, we observed capillary ripples on the cavity
which are not observed in experiments without oil. The origin of these ripples can be
investigated by changing experimental parameters like the oil layer thickness, impact
speed, disc radius and viscosity of the oil. The experimental conditions are expected
to have an influence on the moment of appearance, the wavelength, or amplitude of
the capillary ripples, and shed more light on their origin.

The experiments where the disc is pulled down from the oil/water interface could
be supplemented by experiments where the density difference is bigger. By making
the density difference larger and larger, the shapes should eventually resemble again
the cavity shapes that we find after the impact on a water surface with air. A possible
method to understand the origin of the universal shapes can be to perform the exper-
iment in the bulk of a water bath and generate a line of hydrogen bubbles parallel to
the disc just before setting the disc in motion [5]. In that case the corrected Froude
number is infinite by definition, regardless of how slow the disc is displaced. The
shapes described by the hydrogen bubbles should then be compared to the universal
shapes that we found. Since no significant dependence on density difference is found
in our experiments, we expect those to be quite similar.
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In Chapter 7 we numerically and theoretically investigated the formation of mi-
crojets. We found that after a short time, where compressibility of the liquid plays
a role, the system can be described accurately using potential flow, considering the
good agreement between the numerical simulations and the experiments. We found
that the shape of the meniscus plays a key role by focusing the liquid into a thin jet.
We developed a simple model that accurately predicts the velocity that the jet obtains
due to the pressure impulse and the flow focusing.

In the experiments by Tagawa et al. [6], there is a strong dependence of the jet
velocity on the tube radius. Using our boundary-integral simulations we have shown
that the flow focusing is not responsible for this dependence in spite of the curvature
of the meniscus, which does depend on the tube radius. The dependence found in the
experiments probably is due to the volume that is exposed to the laser energy, but this
needs to be investigated further.

More experimental research can be done to the initial stages right after the laser
has fired, where compressibility is important. This includes visualization and deter-
mining the velocity of the shock wave in the capillary between the bubble and the
free surface. Numerically, axisymmetric compressible simulations could be used and
compared to experimental findings. This could lead to an explanation for the pres-
sure gradient that ultimately develops and is responsible for accelerating the liquid
between the bubble and the free surface.

In Chapter 8 we investigated the sharp corner that appears at the tail of a sliding
droplet under partial wetting conditions. We experimentally find an exponential in-
crease of the curvature at the tail for increasing sliding velocity. Using a lubrication
approximation we show that the curvature of this corner depends on the molecular
cutoff length, associated with the viscous singularity at the contact line of dewetting
flows.

When the velocity of the droplet is increased further, the tail of the droplet be-
comes longer, leading eventually to the deposition of small droplets [7]. It remains
however unclear which mechanism is responsible for the detachment of droplets from
the tail of a sliding drop, and what sets the size of these droplets.

Our findings can be relevant in geometrical focusing of plasmas for nuclear fu-
sion reactions. Since the highest energy density is achieved when a singularity is
approached, it is desirable to focus a plasma into a single point. However, as we
have shown in Chapter 4, especially in that case the development of asymmetries
becomes very important. Instead of spherical focussing into a single point, it could
also be possible to cylindrically focus a plasma into a line. One could intentionally
impose asymmetries which would prevent the focusing into a single point, but could
create singularities at multiple points around the center, which may lead to controlled
jetting phenomena. The development of asymmetries is relevant for the gravitational
collapse of stars, where material is accelerated towards the center of mass. Again, the
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highest densities could be found outside the center of mass and jetting phenomena
could become very important.

Knowledge about the formation of jets and the structures inside them, as we
provided in Chapter 6, can be very useful in understanding stellar jets. Information
about the origin of material that is found in these jets can tell more about the history
of stellar systems that produce them: “But the structures of these jets are often too
complex to determine which features arise at the source and which are the result of
subsequent interactions with the surrounding gas.” [8].
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Summary

Reaching a high energy density is of importance for many physical and chemical pro-
cesses. An efficient way to generate high energy densities is to use a lower available
energy density and to focus this into a small volume. In this thesis we investigate sev-
eral experiments where focusing flows account for reaching higher energy densities.

In Chapter 2 and 3 we investigate the air flow induced by a collapsing cavity. We
create a surface cavity by impacting a round disc onto a water surface at a constant
speed. The downwards moving disc pushes the water outwards, while the hydrostatic
pressure pushes the water back inwards. The cavity eventually closes at a single
point (the pinch-off ), after which two jets are formed: one shooting upwards, and
one shooting downwards. During the closure of the cavity (before the pinch-off),
air is pushed out of the bubble below the pinch-off depth. By combining several
experimental techniques and numerical simulations we show that compressibility of
the air becomes important close to the moment of pinch-off. The influence of the air
has a pronounced effect on the evolution of the volume of the bubble as well as on
the shape of the bubble. Moreover, we show that the air reaches supersonic speeds as
it is flowing out of the cavity.

In Chapter 4 we use the same main experimental setup as in the previous two
chapters; only we replace the round disc by one with non-axisymmetric perturbations
(like the petals on a flower). In this experiment we precisely follow the evolution of
the shape of the free surface on the inside of the cavity. Initially, very close to the
disc, the water surface has the same shape as the disc (just as a round disc results
in a cavity with a circular cross-section), but during the expansion and subsequent
collapse, the cavity wall continuously changes its shape, in an oscillating manner.
If the perturbation is small enough, we find an excellent agreement with theoretical
predictions based on linear stability analysis. For larger perturbations, we observe
spectacular non-linear effects like the formation of sub-cavities and sheet-like jets.

In Chapter 5 we return to the experiment with the round disc. We now however
focus on the splash, the sheet of water that is thrown upwards right after the disc
has hit the undisturbed water surface. At first, there is a very thin sheet surrounding
the disc, which becomes thicker and higher as time progresses. We show that for
any value of the Weber number the shape of this sheet can be described by scaling
laws. By combining these scaling laws with experimental observations and numerical
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simulations we show that the detachment of droplets from the sheet is a result of a
Rayleigh-Taylor instability.

In Chapter 6 we add a new liquid to the experiment. We start with a layer of
sunflower-oil floating on a water surface, and let the disc impact on this layer of oil.
The experiment mainly evolves the same way as described in Chapter 2 and 3, except
that the jet initially consists of only oil. Only at a later time the water joins into the
jet. However, even at times at which the jet mainly consists of water, there always
remains a stable core of oil in the center of the jet. This core extends all the way
down into the bulk, past the point where the pinch-off initially took place. From the
structure of the jet we are able to deduce how the jet is formed.

We perform a second set of experiments by preparing a deep layer of oil on top
of the water surface and positioning the disc at the oil/water interface. When we then
pull down the disc at a constant speed, a part of the oil is dragged down along with
the disc. The entrained oil column obtains a specific shape which depends on the
speed of the disc due to a competition between inertia and gravity: Due to the density
difference, the oil is pushed upwards during the experiments. If the disc is moving
fast enough we can neglect gravity, and the shape is determined by inertia only. We
show that in this inertial regime the column shape becomes independent of the disc
speed.

In Chapter 7 we investigate the formation of microjets using boundary-integral
simulations. In the experiment, a jet is created by focusing a laser pulse inside a
capillary, which is partially filled with a liquid. The laser pulse generates a vapor
bubble which is accompanied by a pressure wave that travels through the capillary.
The pressure wave reflects on the free surface and generates a fast microjet. Our
numerical simulations accurately reproduce the shape and the evolution of the speed
of these jets. We investigate how the curvature is responsible for increasing the speed
and focusing the liquid into a symmetric jet. We use the insight obtained from the
numerical simulations to construct a simple theoretical model that accurately predicts
the speed of the jets.

In Chapter 8 we investigate silicone oil drops that are sliding down an inclined
coated glass plate. The coating provides partial wetting conditions for the silicone
oil. The shape of the droplets that are sliding down the plate depends on the sliding
velocity of the drops. At very low speeds the drops remain nearly circular, but with
increasing velocity a cornered tail is formed. A close look at the tail reveals that there
never is a true corner, but there is always a finite radius of curvature. We experimen-
tally show that the curvature at the tail increases exponentially with sliding speed.
Using a lubrication approximation and matching the two-dimensional structure very
close to the contact line to the three-dimensional structure of the tail further away
from the contact line, we are able to give a theoretical explanation for the observed
behavior.



Samenvatting

Het bereiken van een hoge energiedichtheid is een belangrijke voorwaarde voor veel
fysische en chemische processen. Een efficiënte manier om hoge energiedichtheden
te bereiken is om gebruik te maken van een reeds aanwezige lage energiedichtheid
en deze vervolgens te concentreren in een klein volume. In dit proefschrift onder-
zoeken we diverse experimenten waarbij convergerende vloeistofstromingen zorgen
voor hogere energiedichtheden.

In Hoofdstuk 2 en 3 onderzoeken we de luchtstroming die ontstaat tijdens het
samenklappen van een luchtholte onder water. We creëren een luchtholte door een
ronde metalen schijf met een diameter van enkele centimeters loodrecht op een wa-
teroppervlak in te laten slaan. De schijf duwt het water naar buiten terwijl deze naar
beneden beweegt, en de hydrostatische druk duwt het water vervolgens weer naar
binnen. De holte sluit uiteindelijk in één enkel punt (de pinch-off ), vanwaar ver-
volgens twee dunne vloeistofstralen (jets) wegschieten: één recht omhoog en één
recht naar beneden, richting de schijf. Door gebruik te maken van een combinatie
van verschillende experimentele technieken en numerieke simulaties tonen we aan
dat de compressibiliteit van de lucht een belangrijke rol speelt vlak voor de pinch-
off. Deze invloed van de lucht is terug te zien in zowel het volume als de vorm van
de luchtholte. Daarnaast tonen we aan dat de lucht met supersone snelheid uit deze
luchtholte stroomt.

In Hoofdstuk 4 voeren we hetzelfde experiment uit als in de twee voorgaande
hoofdstukken, alleen vervangen we hier de ronde schijf door een schijf met niet-
axisymmetrische verstoringen (vergelijkbaar met de blaadjes van een bloem). In dit
experiment volgen we heel nauwkeurig de vorm van het wateroppervlak aan de bin-
nenkant van de luchtholte. Vlak nadat het water door de schijf naar buiten wordt
geduwd heeft het wateroppervlak bijna precies dezelfde vorm als de schijf (net zoals
een ronde schijf een luchtholte met een cirkelvormige doorsnede veroorzaakt), maar
tijdens het verder uitdijen en het daaropvolgende samenklappen verandert het wa-
teroppervlak continu van vorm. Als de verstoring klein genoeg is vinden we een
excellente overeenkomst met de voorspelling van een linear model. Voor grotere ver-
storingen observeren we spectaculaire niet-lineaire effecten zoals het afsnoeren van
secundaire holtes en de vorming van plaatvormige jets die gelijkenis vertonen met de
rugvin van een vis.
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In Hoofdstuk 5 keren we weer terug naar het experiment met de ronde schijf.
In dit geval kijken we echter niet naar de luchtholte die onder water ontstaat, maar
naar de zogenoemde splash, de vloeistof die aan de rand van de schijf omhoog wordt
geworpen op het moment dat de schijf het stilstaande wateroppervlak raakt. In eerste
instantie beweegt het water als een dun gordijn rondom de schijf omhoog, maar al
snel wordt het wateroppervlak steeds breder. We tonen aan dat de vorm van het
wateroppervlak (het breder worden en omhoog bewegen) voor elke waarde van het
Weber-getal beschreven wordt door een schalingswet. Door deze schalingswet te
combineren met experimenten en numerieke simulaties hebben we aangetoond dat
het loslaten van druppels aan de bovenrand van het watergordijn het gevolg is van
een Rayleigh-Taylor instabiliteit.

In Hoofdstuk 6 voegen we een tweede vloeistof toe aan het experiment. We
beginnen met een laag zonnebloemolie die drijft op het water, en we laten de schijf
vanuit de lucht inslaan op deze olielaag. Het verloop van het experiment is in grote
lijnen hetzelfde als beschreven in Hoofdstuk 2 en 3, alleen is er iets opvallends aan
de jets die ontstaan: Het begin van de jet bestaat puur uit olie en pas op een later
moment komt er ook water bij in de jet. Echter, zelfs op een tijdstip waarop de jet
voor het grootste deel uit water bestaat vinden we in het midden van de jet een stabiele
cylindervormige kern van olie. Deze cylinder van olie loopt vanuit de jet door naar
beneden tot voorbij het punt waar de jet is ontstaan. Uit de samenstelling van de jet
hebben we achterhaald hoe de jet precies gevormd wordt na de pinch-off.

In hetzelfde hoofdstuk voeren we een tweede set experimenten uit waarbij we
een diepe laag olie op het water laten drijven, en we de schijf starten vanaf het schei-
dingsvlak tussen olie en water. De dikte van de laag olie is zo gekozen dat deze
als oneindig dik kan worden beschouwd. Vervolgens trekken we de schijf met een
constante snelheid naar beneden, waarbij de schijf een deel van de olie mee naar
beneden het water in trekt. De vorm van de oliekolom die met de schijf naar beneden
beweegt is afhankelijk van de snelheid van de schijf vanwege een competitie tussen
de traagheid van de vloeistof en de zwaartekracht: Omdat de olie lichter is dan water
zal de zwaartekracht ervoor zorgen dat de olie tijdens het experiment weer omhoog
geduwd wordt. Echter, als we de schijf snel genoeg bewegen is de zwaartekracht ver-
waarloosbaar. We tonen aan dat bij deze hoge snelheden de vorm van de oliekolom
niet meer afhankelijk is van de snelheid van de schijf.

In Hoofdstuk 7 onderzoeken we de vorming van een microscopische jet met be-
hulp van numerieke simulaties. In experimenten wordt de jet gevormd door met
een laser in een microscopisch dun buisje te schieten dat gedeeltelijk gevuld is met
vloeistof. De laserpuls zorgt ervoor dat er een bel ontstaat in het buisje en, nog belan-
grijker, dat er een drukgolf door het buisje beweegt. Deze drukgolf reflecteert op het
vrije oppervlak en geeft de vloeistof in een zeer korte tijd een hoge snelheid. Omdat
het buisje heel dun is heeft het vloeistofoppervlak in het begin de vorm van een deel
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van een perfecte bol. Het korte tijdsinterval waarin de vloeistof in beweging wordt
gezet zorgt ervoor dat de vloeistof aan het oppervlak richting het middelpunt van deze
(deels virtuele) bol beweegt. Deze convergerende stroming zorgt ervoor dat de snel-
heid nog hoger wordt en dat er een mooie axisymmetrische jet ontstaat. We simuleren
dit proces numeriek met behulp van een Boundary Integral methode, en we vinden
een perfecte overeenstemming met de experimenten. We gebruiken het inzicht dat
we hebben verkregen uit de numerieke simulaties om een simpel theoretisch model
op te stellen dat de snelheid van de jet goed kan voorspellen.

In Hoofdstuk 8 laten we druppels siliconenolie van een glazen plaat glijden. De
glazen plaat heeft een coating die ervoor zorgt dat de druppel olie zich niet uitspreidt
over de glazen plaat. Hierdoor glijden de druppels olie over de plaat op een vergelijk-
bare manier als druppels water die over een ruit glijden. De vorm van deze druppels
is afhankelijk van de snelheid waarmee de druppels over de plaat glijden. Bij hele
lage snelheden blijven de druppels vrijwel volledig rond, maar bij hogere snelheden
krijgen de druppels een puntige staart. Als we deze puntige staart sterk vergroten
zien we dat deze geen echte punt is, maar altijd een beetje rond blijft. Uit onze
experimenten blijkt dat de kromming van de contactlijn in het puntje van de staart
exponentieel toeneemt met de snelheid van de druppel. We verklaren dit verband met
behulp van een lubricatie-benadering waarbij we de twee-dimensionale vorm van de
druppel helemaal aan het tipje van de staart laten aansluiten aan de drie-dimensionale
vorm van de staart verder weg van de punt.
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Stellingen 
 

Behorende bij het proefschrift van Ivo Peters 

Free surface flow focusing 

29 juni 2012 

 
1. Om de vorm van een sluitende luchtholte aan een wateroppervlak correct te 

beschrijven moet er rekening worden gehouden met de compressibiliteit van 
lucht. 
Dit proefschrift, hoofdstuk 2 
 

2. Het mechanisme waarmee de natuur het optreden van singulariteiten voorkomt, 
kan nog veel spectaculairder zijn dan de singulariteit zelf  
Dit proefschrift, hoofdstuk 3 en 4 

 
3. Het wegschieten van druppeltjes na een plons is het gevolg van een Rayleigh-

Taylor instabiliteit.  
Dit proefschrift, hoofdstuk 5 

 
4. De hoge kwaliteit van de jets die met capillairen gemaakt kunnen worden, zijn 

te danken aan de perfectionist die door het leven gaat onder de naam 
Oppervlaktespanning.  
Dit proefschrift, hoofdstuk 7 

 
5. Voor je gemoedsrust kun je zonnebloemolie beter alleen gebruiken bij het 

bakken van pannenkoeken. 
Dit proefschrift, hoofdstuk 6 

 
6. Het altijd onverwachte gedrag van vloeistoffen zorgt voor vele frustraties 

tijdens het uitvoeren van experimenten. Dit weerspiegelt tegelijkertijd ook de 
rijkdom van dit fascinerende vakgebied. 

 
7. "Target fixation" kan levensgevaarlijk zijn tijdens het motorrijden; kijk daarom 

nooit naar een boom als je iets te hard een bocht in gaat. In wetenschappelijk 
onderzoek hoef je hier niet voor te vrezen: hoe goed je je doel ook voor ogen 
hebt, je gaat waarschijnlijk toch een compleet andere richting op. 

 
8. Het maken van een vergelijking is een sterk middel om iets ingewikkelds 

begrijpelijk uit te leggen, maar is juist ontzettend zwak als bewijsmiddel. 



Propositions 
 

Beloning to the thesis of Ivo Peters 

Free surface flow focusing 

June 29, 2012 

 
1. In order to properly describe the shape of a closing surface cavity, the 

compressibility of the gas phase needs to be taken into account.  
This thesis, Chapter 2 
 

2. The mechanisms by which nature prevents the occurrence of singularities are 
often even more spectacular than the singularity itself.  
This thesis, Chapter 3 and 4 

 
3. The ejection of droplets after a splash is the result of a Rayleigh-Taylor 

instability.  
This thesis, Chapter 5 

 
4. The high quality of the jets that can be produced from capillaries, are due to the 

perfectionist that we call Surface Tension.  
This thesis, Chapter 7 

 
5. For one’s peace of mind, one should exclusively restrict the use of sunflower oil 

for baking pancakes.  
This thesis, Chapter 6 

 
6. The ever unexpected behavior of fluids is a source for many frustrations during 

experimental work. This however immediately reflects the richness of this 
fascinating field of research.  

 
7. "Target fixation" can be extremely dangerous when riding a motorbike. 

Therefore one should never look to a tree in a fast corner. These risks are not to 
be feared in scientific research: no matter how well you fixate on your target, 
you are bound to end up going a completely different direction. 

 
8. The use of comparisons is a powerful tool to explain difficult matter. It is 

however an extremely weak way to prove your point. 
 


